Apache Fury 多线程环境下类加载器问题的分析与解决
Apache Fury 是一个高性能的 Java 序列化框架,但在某些特殊场景下会出现类加载问题。本文将深入分析一个在多线程环境特别是 ForkJoinPool 中使用 Fury 时遇到的 ClassNotFoundException 问题。
问题现象
当开发者在自定义类加载器环境中使用 Fury 进行序列化/反序列化操作时,如果这些操作被提交到 ForkJoinPool.commonPool() 中异步执行,就会出现 ClassNotFoundException。具体表现为:
- 主线程能够正常完成序列化/反序列化操作
- 但在 ForkJoinPool 工作线程中执行相同操作时,却无法找到相应的类
根本原因分析
经过深入分析,这个问题由两个关键因素共同导致:
-
ForkJoinPool 的线程特性:在 JDK 11+ 版本中,ForkJoinPool 的工作线程会强制将线程上下文类加载器(ThreadContextClassLoader)设置为系统类加载器(AppClassLoader),而不再继承父线程的类加载器。
-
Fury 的类加载机制:ThreadSafeFury 的实现没有正确使用构建时指定的类加载器,而是默认使用了线程上下文类加载器。当工作线程的上下文类加载器被强制修改后,就无法找到自定义类加载器加载的类。
技术细节
ForkJoinPool 的类加载器行为变化
在 JDK 8 中,ForkJoinWorkerThread 会继承父线程的上下文类加载器。但从 JDK 11 开始,实现发生了变化:
ForkJoinWorkerThread(ThreadGroup group, ForkJoinPool pool,
boolean useSystemClassLoader, boolean isInnocuous) {
// ...
if (useSystemClassLoader) // 默认为 true
super.setContextClassLoader(ClassLoader.getSystemClassLoader());
}
这一变化导致即使用户设置了自定义类加载器,在 ForkJoinPool 中也会被覆盖。
Fury 的类加载机制问题
FuryBuilder.withClassLoader() 方法设置的类加载器只影响当前线程的 Fury 实例,而 ThreadSafeFury 在不同线程中创建新实例时,没有正确继承这个类加载器设置,而是回退到使用线程上下文类加载器。
解决方案
Apache Fury 项目组已经修复了这个问题,主要改进包括:
- 确保 ThreadSafeFury 在所有线程中都使用构建时指定的类加载器
- 不再依赖线程上下文类加载器作为默认选择
- 提供了更明确的类加载失败错误信息
最佳实践
对于需要在多线程环境中使用 Fury 的开发者,建议:
- 明确指定 Fury 使用的类加载器
- 对于自定义类加载器场景,避免依赖线程上下文类加载器
- 在 ForkJoinPool 等有特殊线程行为的环境中,提前测试序列化/反序列化功能
总结
这个问题展示了在复杂类加载环境和多线程编程中可能遇到的陷阱。Apache Fury 通过这次修复,增强了对特殊运行环境的适应能力,为开发者提供了更可靠的序列化解决方案。理解这些底层机制有助于开发者更好地设计跨线程、跨类加载器的分布式应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00