FloorplanTransformation 开源项目教程
项目介绍
FloorplanTransformation 是一个用于将栅格化的楼层平面图转换为矢量图形表示的开源项目。该项目由 Chen Liu, Jiajun Wu, Pushmeet Kohli, 和 Yasutaka Furukawa 开发,并在 2017 年的国际计算机视觉会议 (ICCV) 上发表。与传统的依赖于一系列低级图像处理启发式方法的现有方法不同,FloorplanTransformation 采用基于学习的方法。该项目的核心算法通过神经网络架构将栅格化图像转换为一组表示低级几何和语义信息的节点(如墙角或门端点),然后通过整数规划将这些节点聚合为一组简单的几何图元(如墙线、门线或图标框),以生成矢量化楼层平面图,同时确保拓扑和几何一致性。
项目快速启动
环境准备
在开始之前,请确保您的系统已安装以下依赖:
- 最新版本的 Torch
- Python 2.7
- Nvidia Titan GPU 和 CUDA 8.0
- Torch 包:
nn,cunn,cudnn,image,ffi,csvigo,penlight,opencv - Python 包:
numpy,Gurobi,OpenCV (v3.4.1)
安装步骤
-
克隆项目仓库:
git clone https://github.com/art-programmer/FloorplanTransformation.git cd FloorplanTransformation -
下载预训练模型: 从 Google Drive 下载预训练模型,并将其放置在
checkpoint/目录下,或者通过指定路径加载模型:mkdir checkpoint wget -O checkpoint/pretrained_model.t7 <Google Drive 下载链接> -
运行示例代码: 使用以下命令运行示例代码,生成矢量化楼层平面图:
th predict.lua -loadModel checkpoint/pretrained_model.t7 -floorplanFilename path/to/floorplan.png -outputFilename output.txt
应用案例和最佳实践
应用案例
FloorplanTransformation 可以广泛应用于建筑设计、室内设计、房地产等领域。例如,房地产公司可以使用该项目自动生成房屋的矢量化平面图,以便于在线展示和销售。室内设计师可以使用生成的矢量化平面图进行空间规划和设计。
最佳实践
-
数据预处理: 在使用该项目之前,确保输入的楼层平面图是高质量的栅格化图像。可以通过图像增强技术提高图像质量。
-
模型微调: 如果需要处理特定类型的楼层平面图,可以对预训练模型进行微调,以提高转换的准确性。
-
集成到工作流: 将 FloorplanTransformation 集成到现有的设计工作流中,例如与 CAD 软件结合使用,可以显著提高工作效率。
典型生态项目
1. OpenCV
OpenCV 是一个开源的计算机视觉库,广泛用于图像处理和计算机视觉任务。FloorplanTransformation 项目中使用了 OpenCV 进行图像预处理和后处理。
2. Torch
Torch 是一个基于 Lua 的科学计算框架,广泛用于深度学习任务。FloorplanTransformation 项目使用 Torch 实现其神经网络架构。
3. Gurobi
Gurobi 是一个高性能的数学优化求解器,用于解决复杂的整数规划问题。FloorplanTransformation 项目使用 Gurobi 进行节点聚合和几何图元生成。
4. Panda3D
Panda3D 是一个开源的 3D 游戏引擎,用于创建交互式 3D 应用程序。FloorplanTransformation 项目使用 Panda3D 生成 3D 弹出模型,以便更好地可视化室内场景。
通过结合这些生态项目,FloorplanTransformation 可以实现更强大的功能和更高的灵活性,满足不同应用场景的需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00