使用pyecharts绘制声纹识别结果的时间线图
2025-05-15 22:32:55作者:裘旻烁
在音频处理领域,声纹识别是一项重要技术,能够帮助我们识别不同说话者的声音特征。当我们将pyannote等声纹识别工具与pyecharts数据可视化库结合使用时,可以直观地展示不同说话者在时间线上的话语分布情况。
技术实现思路
要实现类似图中展示的说话者时间线效果,我们可以利用pyecharts中的折线图(Line)组件。虽然表面看起来是水平线段,但实际上这是通过折线图的特性实现的:
- 数据准备:将声纹识别结果转换为时间序列数据,每个说话者对应一个y值
- 图表配置:使用折线图,但关闭连接点的线条显示
- 视觉优化:为不同说话者设置不同颜色,增强可读性
具体实现步骤
1. 数据处理
首先需要将声纹识别结果处理成pyecharts可用的格式。假设我们有以下识别结果:
speech_segments = [
{"speaker": "A", "start": 0, "end": 5},
{"speaker": "B", "start": 3, "end": 8},
{"speaker": "A", "start": 9, "end": 15}
]
2. 创建折线图
from pyecharts.charts import Line
from pyecharts import options as opts
# 创建折线图实例
line = Line()
# 添加x轴(时间轴)
line.add_xaxis([i for i in range(0, 20)])
# 为每个说话者添加数据
speakers = {"A": 1, "B": 2} # 为说话者分配不同的y值
for speaker, y_value in speakers.items():
data = []
for segment in [s for s in speech_segments if s["speaker"] == speaker]:
# 在说话时间段内设置为y值,其他时间为None
for t in range(0, 20):
if segment["start"] <= t <= segment["end"]:
data.append(y_value)
else:
data.append(None)
line.add_yaxis(
series_name=speaker,
y_axis=data,
is_connect_nones=True, # 不连接空值
symbol_size=0, # 隐藏标记点
linestyle_opts=opts.LineStyleOpts(width=3) # 设置线宽
)
3. 图表优化
为了使图表更加清晰,我们可以添加一些优化配置:
line.set_global_opts(
yaxis_opts=opts.AxisOpts(
type_="value",
splitline_opts=opts.SplitLineOpts(is_show=True),
axislabel_opts=opts.LabelOpts(formatter="{value}"), # 自定义y轴标签
min_=0,
max_=3
),
tooltip_opts=opts.TooltipOpts(trigger="axis"),
legend_opts=opts.LegendOpts(pos_top="5%")
)
高级应用技巧
- 动态高度:可以根据说话者的特征(如音高、音量)动态设置y值,使图表包含更多信息
- 重叠处理:当多个说话者同时说话时,可以使用透明度或不同线型区分
- 时间缩放:对于长时间录音,可以添加数据缩放组件方便查看细节
总结
通过pyecharts的折线图组件,我们能够有效地可视化声纹识别结果,展示不同说话者在时间轴上的话语分布。这种方法不仅适用于声纹分析,也可应用于任何需要展示时间线上状态变化的应用场景,如设备运行状态监控、用户行为分析等。
关键点在于将离散的状态变化转换为连续的折线图数据,并通过适当的配置隐藏不需要的视觉元素,最终实现简洁明了的时间线展示效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217