geemap 项目使用教程
1. 项目介绍
geemap 是一个用于与 Google Earth Engine (GEE) 进行交互式地理空间分析和可视化的 Python 包。GEE 是一个云端计算平台,拥有多 PB 级的卫星图像和地理空间数据集。geemap 旨在填补 GEE Python API 在交互式可视化方面的空白,它基于 ipyleaflet 和 ipywidgets,允许用户在 Jupyter 环境中分析和可视化 Earth Engine 数据集。
geemap 适用于学生、研究人员以及希望从 GEE JavaScript API 过渡到 Python API 的现有 GEE 用户。它提供了自动化的 JavaScript 到 Python 转换模块,大大减少了将现有 GEE JavaScript 转换为 Python 脚本和 Jupyter 笔记本的时间。
2. 项目快速启动
安装 geemap
首先,确保你已经安装了 Python 环境。然后,你可以使用 pip 安装 geemap:
pip install geemap
启动 Jupyter Notebook
安装完成后,启动 Jupyter Notebook:
jupyter notebook
创建一个简单的地图
在 Jupyter Notebook 中创建一个新的 Python 文件,并输入以下代码来创建一个简单的地图:
import geemap
# 创建一个地图对象
Map = geemap.Map()
# 添加一个简单的图层
Map.add_basemap('TERRAIN')
# 显示地图
Map
运行上述代码后,你将看到一个带有地形图层的交互式地图。
3. 应用案例和最佳实践
案例1:创建 Landsat 时间序列动画
以下代码展示了如何使用 geemap 创建 Landsat 时间序列动画:
import ee
import geemap
# 初始化 Earth Engine
ee.Initialize()
# 定义 Landsat 数据集
collection = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') \
.filterDate('2019-01-01', '2020-01-01') \
.filterBounds(ee.Geometry.Point(-122.262, 37.8719))
# 创建时间序列动画
geemap.landsat_timeseries(collection, out_gif='landsat_timeseries.gif', vis_params={'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 3000})
案例2:使用 Inspector 工具交互式查看数据
以下代码展示了如何使用 Inspector 工具交互式查看地图上的数据:
import geemap
# 创建地图对象
Map = geemap.Map()
# 添加一个图层
Map.add_basemap('HYBRID')
# 启用 Inspector 工具
Map.add_inspector()
# 显示地图
Map
4. 典型生态项目
生态项目1:动态世界 (Dynamic World)
动态世界是一个基于 GEE 的项目,旨在提供全球 10 米分辨率的近实时土地覆盖数据。geemap 可以用于可视化和分析这些数据。
import geemap
# 创建地图对象
Map = geemap.Map()
# 添加动态世界图层
Map.addLayer(ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1').filterDate('2021-01-01', '2021-12-31').mode(), {}, 'Dynamic World')
# 显示地图
Map
生态项目2:全球土地覆盖 (Global Land Cover)
全球土地覆盖项目提供了全球范围内的土地覆盖数据。geemap 可以用于创建土地覆盖的时间序列动画。
import ee
import geemap
# 初始化 Earth Engine
ee.Initialize()
# 定义土地覆盖数据集
collection = ee.ImageCollection('ESA/WorldCover/v100') \
.filterDate('2020-01-01', '2021-01-01')
# 创建时间序列动画
geemap.landsat_timeseries(collection, out_gif='landcover_timeseries.gif', vis_params={'bands': ['Map']})
通过以上教程,你可以快速上手 geemap 项目,并利用其强大的功能进行地理空间分析和可视化。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00