AgentFormer 使用指南
项目概述
AgentFormer 是一个基于 PyTorch 的官方实现项目,提出了一种新的Transformer模型,专门设计用于处理社会时空中的多代理预测任务。该模型通过联合建模时间和社交维度来提升多智能体行为的预测准确性。本指南将引导您了解项目的基本结构、关键文件以及如何启动和配置项目。
1. 项目目录结构及介绍
以下是 AgentFormer
项目的主要目录结构及其简介:
.
├── cfg # 配置文件夹,存储各种实验配置。
│ ├── eth_agentformer.py
│ └── ... # 其他配置文件
├── data # 数据处理相关脚本和预处理数据。
│ ├── process_nuscenes.py
│ └── eth_ucy # ETH/UCY数据集的兼容版本
├── datasets # 数据加载器和相关数据处理逻辑。
├── eval.py # 评估脚本,用来测试模型性能。
├── model # 模型定义文件夹。
├── requirements.txt # 项目依赖列表。
├── test.py # 测试预训练模型的脚本。
├── train.py # 训练模型的主脚本。
├── utils # 辅助函数和工具集合。
├── README.md # 项目说明文档。
└── LICENSE # 项目许可证文件。
2. 项目的启动文件介绍
主要启动文件
-
train.py: 用于训练AgentFormer模型的脚本。它支持两阶段训练,首先训练VAE模型,然后训练轨迹采样器(DLow模型)。您可以通过指定不同的配置文件(
--cfg
)和GPU编号(--gpu
)来定制训练过程。 -
test.py: 这个脚本用于测试预先训练好的模型。您同样可以指定配置文件和运行的GPU编号来得到特定数据集上的预测结果。
示例命令:
-
训练模型:
python train.py --cfg user_eth_agentformer_pre --gpu 0
然后在完成VAE模型训练后,继续训练DLow模型:
python train.py --cfg user_eth_agentformer --gpu 0
-
测试模型:
python test.py --cfg eth_agentformer --gpu 0
3. 项目的配置文件介绍
配置文件位于 cfg
目录下,这些.py
文件定义了训练和测试的具体设置,包括但不限于模型架构的细节、学习率、优化器的选择、数据集路径等。每个配置文件对应不同的实验或使用场景。
-
基础配置如
eth_agentformer.py
包含了基本的实验设置,比如网络结构选择、训练轮次、损失函数等。 -
自定义配置(例如
user_eth_agentformer_pre.py
和user_eth_agentformer.py
)是给用户提供的模板,用于修改和调整以适应自己的实验需求。在进行两阶段训练时,需要确保预训练模型的配置(pred_cfg
)与第二阶段训练的配置相匹配,并且指定了正确的预训练模型epoch。
重要提示:使用配置文件前,请确保理解其中各个参数的意义,并根据实际环境调整(如GPU选择)以避免错误。
本指南简明扼要地介绍了AgentFormer项目的核心部分,详细深入的学习和实践还需要参考项目文档和源码注释,以获得最佳实践指导。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04