AgentFormer 使用指南
项目概述
AgentFormer 是一个基于 PyTorch 的官方实现项目,提出了一种新的Transformer模型,专门设计用于处理社会时空中的多代理预测任务。该模型通过联合建模时间和社交维度来提升多智能体行为的预测准确性。本指南将引导您了解项目的基本结构、关键文件以及如何启动和配置项目。
1. 项目目录结构及介绍
以下是 AgentFormer 项目的主要目录结构及其简介:
.
├── cfg # 配置文件夹,存储各种实验配置。
│ ├── eth_agentformer.py
│ └── ... # 其他配置文件
├── data # 数据处理相关脚本和预处理数据。
│ ├── process_nuscenes.py
│ └── eth_ucy # ETH/UCY数据集的兼容版本
├── datasets # 数据加载器和相关数据处理逻辑。
├── eval.py # 评估脚本,用来测试模型性能。
├── model # 模型定义文件夹。
├── requirements.txt # 项目依赖列表。
├── test.py # 测试预训练模型的脚本。
├── train.py # 训练模型的主脚本。
├── utils # 辅助函数和工具集合。
├── README.md # 项目说明文档。
└── LICENSE # 项目许可证文件。
2. 项目的启动文件介绍
主要启动文件
-
train.py: 用于训练AgentFormer模型的脚本。它支持两阶段训练,首先训练VAE模型,然后训练轨迹采样器(DLow模型)。您可以通过指定不同的配置文件(
--cfg)和GPU编号(--gpu)来定制训练过程。 -
test.py: 这个脚本用于测试预先训练好的模型。您同样可以指定配置文件和运行的GPU编号来得到特定数据集上的预测结果。
示例命令:
-
训练模型:
python train.py --cfg user_eth_agentformer_pre --gpu 0然后在完成VAE模型训练后,继续训练DLow模型:
python train.py --cfg user_eth_agentformer --gpu 0 -
测试模型:
python test.py --cfg eth_agentformer --gpu 0
3. 项目的配置文件介绍
配置文件位于 cfg 目录下,这些.py文件定义了训练和测试的具体设置,包括但不限于模型架构的细节、学习率、优化器的选择、数据集路径等。每个配置文件对应不同的实验或使用场景。
-
基础配置如
eth_agentformer.py包含了基本的实验设置,比如网络结构选择、训练轮次、损失函数等。 -
自定义配置(例如
user_eth_agentformer_pre.py和user_eth_agentformer.py)是给用户提供的模板,用于修改和调整以适应自己的实验需求。在进行两阶段训练时,需要确保预训练模型的配置(pred_cfg)与第二阶段训练的配置相匹配,并且指定了正确的预训练模型epoch。
重要提示:使用配置文件前,请确保理解其中各个参数的意义,并根据实际环境调整(如GPU选择)以避免错误。
本指南简明扼要地介绍了AgentFormer项目的核心部分,详细深入的学习和实践还需要参考项目文档和源码注释,以获得最佳实践指导。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00