AgentFormer 使用指南
项目概述
AgentFormer 是一个基于 PyTorch 的官方实现项目,提出了一种新的Transformer模型,专门设计用于处理社会时空中的多代理预测任务。该模型通过联合建模时间和社交维度来提升多智能体行为的预测准确性。本指南将引导您了解项目的基本结构、关键文件以及如何启动和配置项目。
1. 项目目录结构及介绍
以下是 AgentFormer 项目的主要目录结构及其简介:
.
├── cfg # 配置文件夹,存储各种实验配置。
│ ├── eth_agentformer.py
│ └── ... # 其他配置文件
├── data # 数据处理相关脚本和预处理数据。
│ ├── process_nuscenes.py
│ └── eth_ucy # ETH/UCY数据集的兼容版本
├── datasets # 数据加载器和相关数据处理逻辑。
├── eval.py # 评估脚本,用来测试模型性能。
├── model # 模型定义文件夹。
├── requirements.txt # 项目依赖列表。
├── test.py # 测试预训练模型的脚本。
├── train.py # 训练模型的主脚本。
├── utils # 辅助函数和工具集合。
├── README.md # 项目说明文档。
└── LICENSE # 项目许可证文件。
2. 项目的启动文件介绍
主要启动文件
-
train.py: 用于训练AgentFormer模型的脚本。它支持两阶段训练,首先训练VAE模型,然后训练轨迹采样器(DLow模型)。您可以通过指定不同的配置文件(
--cfg)和GPU编号(--gpu)来定制训练过程。 -
test.py: 这个脚本用于测试预先训练好的模型。您同样可以指定配置文件和运行的GPU编号来得到特定数据集上的预测结果。
示例命令:
-
训练模型:
python train.py --cfg user_eth_agentformer_pre --gpu 0然后在完成VAE模型训练后,继续训练DLow模型:
python train.py --cfg user_eth_agentformer --gpu 0 -
测试模型:
python test.py --cfg eth_agentformer --gpu 0
3. 项目的配置文件介绍
配置文件位于 cfg 目录下,这些.py文件定义了训练和测试的具体设置,包括但不限于模型架构的细节、学习率、优化器的选择、数据集路径等。每个配置文件对应不同的实验或使用场景。
-
基础配置如
eth_agentformer.py包含了基本的实验设置,比如网络结构选择、训练轮次、损失函数等。 -
自定义配置(例如
user_eth_agentformer_pre.py和user_eth_agentformer.py)是给用户提供的模板,用于修改和调整以适应自己的实验需求。在进行两阶段训练时,需要确保预训练模型的配置(pred_cfg)与第二阶段训练的配置相匹配,并且指定了正确的预训练模型epoch。
重要提示:使用配置文件前,请确保理解其中各个参数的意义,并根据实际环境调整(如GPU选择)以避免错误。
本指南简明扼要地介绍了AgentFormer项目的核心部分,详细深入的学习和实践还需要参考项目文档和源码注释,以获得最佳实践指导。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C031
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00