AgentFormer 开源项目教程
项目介绍
AgentFormer 是一个用于社会时空多智能体预测的 Transformer 模型。该项目由 Ye Yuan、Xinshuo Weng、Yanglan Ou 和 Kris Kitani 在 ICCV 2021 上提出。AgentFormer 通过联合建模时间和社交维度,能够有效地预测多个智能体的未来轨迹。该模型在行人轨迹预测和自动驾驶数据集上表现出色,显著提升了现有技术的水平。
项目快速启动
环境准备
- 操作系统:MacOS 或 Linux
- Python:>= 3.7
- PyTorch:== 1.8.0
- 依赖安装:
pip install -r requirements.txt
数据准备
ETH/UCY 数据集
项目已经包含了一个转换后的 ETH/UCY 数据集,位于 datasets/eth_ucy 目录下。
nuScenes 数据集
- 下载原始的 nuScenes 数据集。
- 按照 nuScenes 预测挑战的说明进行操作。
- 下载并安装地图扩展。
- 运行以下脚本以获取处理后的 nuScenes 数据集:
python data/process_nuscenes.py --data_root <PATH_TO_NUSCENES>
模型训练
AgentFormer 需要两阶段训练:
-
训练 AgentFormer VAE 模型(不包括轨迹采样器):
python train.py --cfg user_eth_agentformer_pre --gpu 0 -
训练 AgentFormer DLow 模型(轨迹采样器):
python train.py --cfg user_eth_agentformer --gpu 0注意:在第二阶段训练时,需要将
pred_cfg字段设置为第一阶段使用的配置文件,并将pred_epoch设置为要使用的 VAE 模型 epoch。
模型评估
ETH/UCY 数据集
运行以下命令以测试 ETH 数据集的预训练模型:
python test.py --cfg eth_agentformer --gpu 0
可以使用 hotel、univ、zara1、zara2 替换 eth 来测试其他数据集。
nuScenes 数据集
运行以下命令以测试 nuScenes 数据集的预训练模型:
python test.py --cfg nuscenes_5sample_agentformer --gpu 0
可以使用 10sample 替换 5sample 来计算所有指标(ADE_5、FDE_5、ADE_10、FDE_10)。
应用案例和最佳实践
行人轨迹预测
AgentFormer 在行人轨迹预测任务中表现出色,特别是在拥挤场景下。通过联合建模时间和社交维度,模型能够更好地捕捉行人的交互行为,从而提高预测的准确性。
自动驾驶
在自动驾驶领域,AgentFormer 可以用于预测周围车辆和行人的未来轨迹,帮助自动驾驶系统做出更安全的决策。通过多智能体轨迹预测,系统可以更好地规划行驶路径,避免潜在的碰撞风险。
典型生态项目
Social-LSTM
Social-LSTM 是一个早期用于行人轨迹预测的模型,通过 LSTM 网络建模行人的社交行为。AgentFormer 在其基础上进一步引入了 Transformer 架构,显著提升了预测性能。
nuScenes
nuScenes 是一个用于自动驾驶的多模态数据集,包含了丰富的传感器数据。AgentFormer 在 nuScenes 数据集上的表现证明了其在自动驾驶领域的应用潜力。
Transformer-based Object Detection
Transformer 在目标检测领域的应用也取得了显著进展,AgentFormer 借鉴了 Transformer 的架构,将其应用于多智能体轨迹预测任务,展示了 Transformer 在不同领域的广泛适用性。
通过本教程,您应该能够快速上手 AgentFormer 项目,并在实际应用中取得良好的效果。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00