AgentFormer 开源项目教程
项目介绍
AgentFormer 是一个用于社会时空多智能体预测的 Transformer 模型。该项目由 Ye Yuan、Xinshuo Weng、Yanglan Ou 和 Kris Kitani 在 ICCV 2021 上提出。AgentFormer 通过联合建模时间和社交维度,能够有效地预测多个智能体的未来轨迹。该模型在行人轨迹预测和自动驾驶数据集上表现出色,显著提升了现有技术的水平。
项目快速启动
环境准备
- 操作系统:MacOS 或 Linux
- Python:>= 3.7
- PyTorch:== 1.8.0
- 依赖安装:
pip install -r requirements.txt
数据准备
ETH/UCY 数据集
项目已经包含了一个转换后的 ETH/UCY 数据集,位于 datasets/eth_ucy
目录下。
nuScenes 数据集
- 下载原始的 nuScenes 数据集。
- 按照 nuScenes 预测挑战的说明进行操作。
- 下载并安装地图扩展。
- 运行以下脚本以获取处理后的 nuScenes 数据集:
python data/process_nuscenes.py --data_root <PATH_TO_NUSCENES>
模型训练
AgentFormer 需要两阶段训练:
-
训练 AgentFormer VAE 模型(不包括轨迹采样器):
python train.py --cfg user_eth_agentformer_pre --gpu 0
-
训练 AgentFormer DLow 模型(轨迹采样器):
python train.py --cfg user_eth_agentformer --gpu 0
注意:在第二阶段训练时,需要将
pred_cfg
字段设置为第一阶段使用的配置文件,并将pred_epoch
设置为要使用的 VAE 模型 epoch。
模型评估
ETH/UCY 数据集
运行以下命令以测试 ETH 数据集的预训练模型:
python test.py --cfg eth_agentformer --gpu 0
可以使用 hotel
、univ
、zara1
、zara2
替换 eth
来测试其他数据集。
nuScenes 数据集
运行以下命令以测试 nuScenes 数据集的预训练模型:
python test.py --cfg nuscenes_5sample_agentformer --gpu 0
可以使用 10sample
替换 5sample
来计算所有指标(ADE_5、FDE_5、ADE_10、FDE_10)。
应用案例和最佳实践
行人轨迹预测
AgentFormer 在行人轨迹预测任务中表现出色,特别是在拥挤场景下。通过联合建模时间和社交维度,模型能够更好地捕捉行人的交互行为,从而提高预测的准确性。
自动驾驶
在自动驾驶领域,AgentFormer 可以用于预测周围车辆和行人的未来轨迹,帮助自动驾驶系统做出更安全的决策。通过多智能体轨迹预测,系统可以更好地规划行驶路径,避免潜在的碰撞风险。
典型生态项目
Social-LSTM
Social-LSTM 是一个早期用于行人轨迹预测的模型,通过 LSTM 网络建模行人的社交行为。AgentFormer 在其基础上进一步引入了 Transformer 架构,显著提升了预测性能。
nuScenes
nuScenes 是一个用于自动驾驶的多模态数据集,包含了丰富的传感器数据。AgentFormer 在 nuScenes 数据集上的表现证明了其在自动驾驶领域的应用潜力。
Transformer-based Object Detection
Transformer 在目标检测领域的应用也取得了显著进展,AgentFormer 借鉴了 Transformer 的架构,将其应用于多智能体轨迹预测任务,展示了 Transformer 在不同领域的广泛适用性。
通过本教程,您应该能够快速上手 AgentFormer 项目,并在实际应用中取得良好的效果。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04