ASAP:自动化病理切片分析平台
2024-09-17 15:02:46作者:羿妍玫Ivan
项目介绍
ASAP(Automated Slide Analysis Platform)是一个开源平台,专为全切片病理图像的可视化、标注和自动化分析而设计。它由多个关键组件(如切片输入/输出、图像处理、图像查看器)组成,这些组件可以单独使用。ASAP基于多个成熟的开源包构建,如OpenSlide、Qt和OpenCV,并在这些基础上进行了有意义的扩展。
项目技术分析
ASAP的技术架构非常强大,它整合了多个知名的开源库,如OpenCV、Qt、libtiff、libjpeg、OpenJPEG、DCMTK、SWIG、OpenSlide和PugiXML。这些库为ASAP提供了强大的图像处理能力、高效的图像显示和灵活的插件扩展机制。
ASAP的核心功能包括:
- 切片读取:支持多种供应商的扫描全切片图像,包括Aperio、Ventana、Hamamatsu、Olympus,以及Leica LIF格式的荧光图像。
- 切片写入:支持生成多分辨率平铺的TIFF文件,适用于ARGB、RGB、Indexed和单色图像,并支持不同的数据类型(如float)。
- Python接口:通过Numpy数组访问多分辨率图像,方便与Python生态系统集成。
- 图像处理:提供基本的图像原语(如Patch),可以与OpenCV等图像处理库无缝对接。
- 图像查看器:基于Qt的查看器,能够快速流畅地显示全切片图像。
- 标注工具:支持点、多边形和样条曲线标注,标注数据以简单易读的XML格式存储,便于与其他软件集成。
- 插件扩展:通过四种接口(工具、过滤器、扩展、文件格式),用户可以轻松实现插件扩展。
- 实时图像处理:在查看图像时支持实时图像处理,如颜色解卷积和细胞核检测。
项目及技术应用场景
ASAP的应用场景非常广泛,特别适合以下领域:
- 病理学研究:病理学家可以使用ASAP对全切片图像进行可视化和标注,辅助病理诊断和研究。
- 医学影像分析:研究人员可以利用ASAP进行医学影像的自动化分析,如细胞核检测、组织分类等。
- 教育与培训:医学院校和培训机构可以使用ASAP进行病理图像的教学和培训,提高学生的实践能力。
- 临床试验:在临床试验中,ASAP可以帮助研究人员快速分析和标注大量的病理切片图像,提高工作效率。
项目特点
ASAP具有以下显著特点:
- 开源免费:ASAP是一个开源项目,用户可以免费使用并根据需要进行定制和扩展。
- 跨平台支持:目前ASAP支持64位Windows和Linux系统,并有初步的MacOS支持。
- 强大的图像处理能力:整合了OpenCV等知名图像处理库,提供高效的图像处理功能。
- 灵活的插件机制:用户可以通过插件扩展ASAP的功能,满足不同应用场景的需求。
- 易于集成:ASAP提供了Python接口,方便与Python生态系统集成,支持快速开发和部署。
总之,ASAP是一个功能强大、易于扩展的自动化病理切片分析平台,适合各种病理图像分析和研究场景。无论你是病理学家、研究人员还是教育工作者,ASAP都能为你提供强大的工具支持。快来尝试ASAP,开启你的病理图像分析之旅吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869