ASAP:自动化病理切片分析平台
2024-09-17 01:35:14作者:羿妍玫Ivan
项目介绍
ASAP(Automated Slide Analysis Platform)是一个开源平台,专为全切片病理图像的可视化、标注和自动化分析而设计。它由多个关键组件(如切片输入/输出、图像处理、图像查看器)组成,这些组件可以单独使用。ASAP基于多个成熟的开源包构建,如OpenSlide、Qt和OpenCV,并在这些基础上进行了有意义的扩展。
项目技术分析
ASAP的技术架构非常强大,它整合了多个知名的开源库,如OpenCV、Qt、libtiff、libjpeg、OpenJPEG、DCMTK、SWIG、OpenSlide和PugiXML。这些库为ASAP提供了强大的图像处理能力、高效的图像显示和灵活的插件扩展机制。
ASAP的核心功能包括:
- 切片读取:支持多种供应商的扫描全切片图像,包括Aperio、Ventana、Hamamatsu、Olympus,以及Leica LIF格式的荧光图像。
- 切片写入:支持生成多分辨率平铺的TIFF文件,适用于ARGB、RGB、Indexed和单色图像,并支持不同的数据类型(如float)。
- Python接口:通过Numpy数组访问多分辨率图像,方便与Python生态系统集成。
- 图像处理:提供基本的图像原语(如Patch),可以与OpenCV等图像处理库无缝对接。
- 图像查看器:基于Qt的查看器,能够快速流畅地显示全切片图像。
- 标注工具:支持点、多边形和样条曲线标注,标注数据以简单易读的XML格式存储,便于与其他软件集成。
- 插件扩展:通过四种接口(工具、过滤器、扩展、文件格式),用户可以轻松实现插件扩展。
- 实时图像处理:在查看图像时支持实时图像处理,如颜色解卷积和细胞核检测。
项目及技术应用场景
ASAP的应用场景非常广泛,特别适合以下领域:
- 病理学研究:病理学家可以使用ASAP对全切片图像进行可视化和标注,辅助病理诊断和研究。
- 医学影像分析:研究人员可以利用ASAP进行医学影像的自动化分析,如细胞核检测、组织分类等。
- 教育与培训:医学院校和培训机构可以使用ASAP进行病理图像的教学和培训,提高学生的实践能力。
- 临床试验:在临床试验中,ASAP可以帮助研究人员快速分析和标注大量的病理切片图像,提高工作效率。
项目特点
ASAP具有以下显著特点:
- 开源免费:ASAP是一个开源项目,用户可以免费使用并根据需要进行定制和扩展。
- 跨平台支持:目前ASAP支持64位Windows和Linux系统,并有初步的MacOS支持。
- 强大的图像处理能力:整合了OpenCV等知名图像处理库,提供高效的图像处理功能。
- 灵活的插件机制:用户可以通过插件扩展ASAP的功能,满足不同应用场景的需求。
- 易于集成:ASAP提供了Python接口,方便与Python生态系统集成,支持快速开发和部署。
总之,ASAP是一个功能强大、易于扩展的自动化病理切片分析平台,适合各种病理图像分析和研究场景。无论你是病理学家、研究人员还是教育工作者,ASAP都能为你提供强大的工具支持。快来尝试ASAP,开启你的病理图像分析之旅吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
628
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
74
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K