NeAT 的项目扩展与二次开发
2025-04-27 07:34:27作者:裴麒琰
1、项目的基础介绍
NeAT(Neural Architecture Trees)是一个用于自动机器学习(AutoML)的开源项目。它致力于通过神经网络结构的自动搜索来优化模型性能,减少人工设计的复杂性。NeAT采用了一种基于树的遗传编程算法,以生成和优化神经网络结构,适用于那些对模型结构知之甚少或希望自动改进现有结构的场景。
2、项目的核心功能
- 自动搜索神经网络结构:NeAT能够自动探索并生成神经网络结构,无需人工干预。
- 遗传编程算法:利用遗传编程的原理,对神经网络结构进行编码,通过选择、交叉和变异操作优化网络。
- 模型性能优化:通过自动调整网络结构,NeAT能够提高模型在特定任务上的性能。
- 易于集成的API:提供了一套易于使用的API,方便用户在自己的项目中集成NeAT。
3、项目使用了哪些框架或库?
NeAT主要基于以下框架和库开发:
- Python:项目使用Python语言编写,确保了其良好的可读性和易用性。
- TensorFlow:利用TensorFlow框架构建和训练神经网络。
- NumPy:用于高效的数值计算。
4、项目的代码目录及介绍
NeAT的代码目录结构大致如下:
config:包含项目配置文件,如模型超参数设置。data:存放数据集相关的文件。model:定义了NeAT中的模型类和神经网络结构。search:包含遗传编程搜索算法的实现代码。train:提供了训练和验证模型的脚本。utils:包括了项目所需的工具函数和辅助模块。
5、对项目进行扩展或者二次开发的方向
- 算法优化:可以对遗传编程的算法进行优化,提高搜索的效率和准确性。
- 支持更多模型:扩展NeAT以支持更多类型的神经网络结构,如卷积神经网络(CNN)或循环神经网络(RNN)。
- 集成其他AutoML工具:集成其他AutoML工具和库,如HPO(超参数优化)工具,以提供更全面的自动化机器学习解决方案。
- 可视化工具:开发可视化工具,帮助用户更直观地理解搜索过程中的结构变化。
- 性能评估:增加更多的性能评估指标,以便更全面地评价生成的网络结构。
- 跨平台支持:改进项目以支持更多的操作系统和硬件平台,提高其可用性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
暂无简介
Dart
713
171
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
454
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119