推荐项目:Flink-Prometheus 示例,打造高效流处理监控系统
在大数据处理的前沿阵地,实时流处理引擎Apache Flink以其强大的状态管理和容错机制赢得众多开发者青睐。与此同时,Prometheus作为现代云原生环境下的监控解决方案,因其灵活的数据收集和查询语言受到广泛欢迎。当这两个重量级工具碰撞在一起,会产生怎样的火花呢?今天就为您介绍一个将这两者完美结合的开源项目 —— Flink-Prometheus 示例。
项目介绍
Flink-Prometheus 示例是一个为演示如何使用Prometheus来监控Apache Flink作业而设计的生动范例。由开发者Maximilian Bode创建并曾在多个技术会议上分享,这个项目通过一个实践案例,展示了如何集成Prometheus对Flink进行细粒度的性能监控,确保您的流处理应用健壮且高效运行。
技术分析
基于Apache Flink v1.20.0 和 Prometheus v2.37.1 的最新版本,该项目利用了业界最佳实践,通过Docker Compose轻松部署监控环境,包括Flink的JobManager与TaskManager、Prometheus服务器以及可视化工具Grafana。技术栈中还包括Gradle构建系统(搭配Kotlin DSL)以实现高效的项目管理,以及一系列高质量插件,如shadow用于jar打包,spotless和spotbugs保证代码质量,还有用于版本管理的gradle-versions-plugin等。
应用场景
这个项目尤其适合以下场景:
- 数据工程师和开发人员希望深入了解如何在Flink应用中实施有效的监控策略。
- 在云原生环境中运行大规模Flink集群的企业,需要一套成熟稳定的监控方案。
- 对于那些正在寻找替代或优化现有监控系统的团队,尤其是已经依赖Prometheus的团队。
通过监控Flink作业的关键指标,比如吞吐量、延迟和资源使用情况,运维团队能够迅速定位问题,保障系统稳定性和效率。
项目特点
- 一站式集成:无需从零开始搭建监控架构,快速上手监控Flink作业。
- 灵活性高:Prometheus提供了强大的自定义监控指标能力,适应各种复杂监控需求。
- 可视化直观:集成Grafana,提供直观的仪表板,帮助快速理解系统健康状况。
- 详尽文档:配合博客文章和演讲视频,深入浅出地解释如何配置和使用。
- 自动化部署:利用Docker Compose简化了复杂的部署流程,一键启动整个监控环境。
Flink-Prometheus 示例项目不仅是一个简单示例,它是流处理监控领域的一个有力工具,为追求系统高度可观察性的开发者提供了一条快捷路径。无论您是Flink的新
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00