Apache Flink ML 使用教程
2024-09-02 12:35:30作者:邬祺芯Juliet
项目介绍
Apache Flink ML 是 Apache Flink 生态系统中的一个机器学习库,旨在提供高效、可扩展的机器学习算法和工具。Flink ML 利用 Flink 的分布式计算能力,使得机器学习任务可以在大规模数据集上高效运行。该库支持多种常见的机器学习算法,并且易于集成到现有的 Flink 作业中。
项目快速启动
环境准备
在开始之前,确保你已经安装了以下软件:
- Java 8 或更高版本
- Apache Flink 1.12 或更高版本
- Maven 3.6 或更高版本
编译和运行
-
克隆项目仓库:
git clone https://github.com/apache/flink-ml.git
-
进入项目目录并编译:
cd flink-ml mvn clean install
-
运行一个简单的示例:
import org.apache.flink.ml.common.param.HasInputCols; import org.apache.flink.ml.common.param.HasOutputCol; import org.apache.flink.ml.feature.vectorassembler.VectorAssembler; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.table.api.Table; import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; public class VectorAssemblerExample { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); // 创建一个简单的表 tEnv.executeSql("CREATE TABLE inputTable (" + "id INT, " + "vec1 FLOAT, " + "vec2 FLOAT) WITH (" + "'connector' = 'filesystem', " + "'path' = 'path/to/input.csv', " + "'format' = 'csv')"); Table inputTable = tEnv.sqlQuery("SELECT * FROM inputTable"); // 创建 VectorAssembler 实例 VectorAssembler vectorAssembler = new VectorAssembler() .setInputCols(new String[]{"vec1", "vec2"}) .setOutputCol("assembled_vec"); // 应用 VectorAssembler Table outputTable = vectorAssembler.transform(inputTable)[0]; // 打印结果 outputTable.execute().print(); } }
应用案例和最佳实践
应用案例
Apache Flink ML 可以应用于多种场景,例如:
- 推荐系统:使用 Flink ML 的协同过滤算法来构建推荐系统。
- 异常检测:利用 Flink ML 的聚类算法来检测数据中的异常点。
- 文本分类:使用 Flink ML 的文本处理和分类算法来对文本数据进行分类。
最佳实践
- 数据预处理:在进行机器学习任务之前,确保数据已经过适当的预处理,包括清洗、标准化和特征工程。
- 参数调优:使用交叉验证和网格搜索等技术来调优模型参数,以获得最佳性能。
- 监控和维护:定期监控模型的性能,并在必要时进行更新和维护。
典型生态项目
Apache Flink ML 与其他 Apache 项目紧密集成,形成了一个强大的生态系统:
- Apache Kafka:用于实时数据流的采集和分发。
- Apache Hadoop:用于大规模数据存储和处理。
- Apache Zeppelin:用于交互式数据分析和可视化。
通过这些项目的协同工作,Flink ML 可以在复杂的分布式环境中高效地执行机器学习任务。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28