TheFuzz 项目技术文档
2024-12-25 09:36:56作者:谭伦延
1. 安装指南
使用 pip 安装
你可以通过 pip
从 PyPI 安装 thefuzz
:
pip install thefuzz
从 GitHub 安装
你也可以通过 pip
从 GitHub 安装最新版本的 thefuzz
:
pip install git+git://github.com/seatgeek/thefuzz.git@0.19.0#egg=thefuzz
手动安装
如果你更喜欢手动安装,可以按照以下步骤操作:
-
克隆仓库:
git clone git://github.com/seatgeek/thefuzz.git
-
进入项目目录:
cd thefuzz
-
安装项目:
python setup.py install
2. 项目使用说明
TheFuzz
是一个用于模糊字符串匹配的 Python 库,它基于 Levenshtein 距离来计算字符串之间的差异。以下是一些基本的使用示例:
简单比率
from thefuzz import fuzz
# 计算两个字符串的相似度
ratio = fuzz.ratio("this is a test", "this is a test!")
print(ratio) # 输出: 97
部分比率
# 计算部分字符串的相似度
partial_ratio = fuzz.partial_ratio("this is a test", "this is a test!")
print(partial_ratio) # 输出: 100
令牌排序比率
# 计算令牌排序后的相似度
token_sort_ratio = fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
print(token_sort_ratio) # 输出: 100
令牌集比率
# 计算令牌集的相似度
token_set_ratio = fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
print(token_set_ratio) # 输出: 100
处理提取
from thefuzz import process
choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
# 提取最匹配的选项
result = process.extract("new york jets", choices, limit=2)
print(result) # 输出: [('New York Jets', 100), ('New York Giants', 78)]
3. 项目 API 使用文档
fuzz
模块
fuzz.ratio(s1, s2)
: 计算两个字符串的相似度,返回一个 0 到 100 的整数。fuzz.partial_ratio(s1, s2)
: 计算部分字符串的相似度。fuzz.token_sort_ratio(s1, s2)
: 计算令牌排序后的相似度。fuzz.token_set_ratio(s1, s2)
: 计算令牌集的相似度。fuzz.partial_token_sort_ratio(s1, s2)
: 计算部分令牌排序后的相似度。
process
模块
process.extract(query, choices, limit=None)
: 从choices
中提取与query
最匹配的选项,返回一个列表,每个元素是一个元组,包含匹配的字符串和相似度。process.extractOne(query, choices, scorer=None)
: 提取与query
最匹配的单个选项,返回一个元组,包含匹配的字符串和相似度。
4. 项目安装方式
TheFuzz
可以通过以下几种方式安装:
-
通过 pip 从 PyPI 安装:
pip install thefuzz
-
通过 pip 从 GitHub 安装:
pip install git+git://github.com/seatgeek/thefuzz.git@0.19.0#egg=thefuzz
-
手动安装:
-
克隆仓库:
git clone git://github.com/seatgeek/thefuzz.git
-
进入项目目录:
cd thefuzz
-
安装项目:
python setup.py install
-
通过以上步骤,你可以轻松安装并使用 TheFuzz
进行模糊字符串匹配。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-424B-A47B-Paddle
ERNIE-4.5-VL-424B-A47B 是百度推出的多模态MoE大模型,支持文本与视觉理解,总参数量424B,激活参数量47B。基于异构混合专家架构,融合跨模态预训练与高效推理优化,具备强大的图文生成、推理和问答能力。适用于复杂多模态任务场景00pangu-pro-moe
盘古 Pro MoE (72B-A16B):昇腾原生的分组混合专家模型016kornia
🐍 空间人工智能的几何计算机视觉库Python00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp博客页面工作坊中的断言方法优化建议3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp英语课程填空题提示缺失问题分析10 freeCodeCamp Cafe Menu项目中link元素的void特性解析
最新内容推荐
Far2l项目在Wayland环境下的输入处理优化方案 QuTiP项目中实现位移Drude-Lorentz浴的HEOM求解方法 PrimeFaces中SelectOneRadio组件点击区域优化实践 Calva扩展对Vim运动命令的影响分析与解决方案 Stryker.NET 项目中处理源码式 NuGet 包的特殊挑战 Turms即时通讯系统中系统消息持久化机制解析 rest.nvim中缓冲区局部键绑定的优化实践 ESP-ADF中PWM音频流播放完成时的数据刷新问题分析 far2l项目中Ctrl+Shift+方向键失效问题的解决方案 React-Codemirror 项目中 exports 未定义错误分析与解决方案
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
294
873

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
488
393

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
356
305

React Native鸿蒙化仓库
C++
111
195

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
365
37

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
578
41

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
980
0

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
689
86

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
51
52