GPyTorch v1.14 版本发布:支持 Python 3.10 和 PyTorch 2.0 的重大升级
GPyTorch 是基于 PyTorch 的高斯过程(Gaussian Process)机器学习库,它提供了构建和训练高斯过程模型的灵活框架。高斯过程是一种强大的非参数化方法,广泛应用于贝叶斯优化、时间序列预测和不确定性量化等领域。GPyTorch 通过利用 PyTorch 的自动微分和 GPU 加速功能,实现了高效的高斯过程建模。
核心改进与特性
1. Python 3.10 和 PyTorch 2.0 支持
本次版本升级最重要的变化是全面支持 Python 3.10 和 PyTorch 2.0 环境。这一改进意味着用户可以在最新的 Python 和 PyTorch 生态系统中使用 GPyTorch,享受新版本带来的性能优化和功能增强。
2. 线性核函数的维度特定方差支持
在机器学习中,核函数(Kernel Function)决定了高斯过程模型的行为。v1.14 版本对线性核(Linear Kernel)进行了增强,现在允许为每个输入维度指定不同的方差参数。这一改进使得模型能够更灵活地处理不同尺度或重要性的特征,提高了模型的表达能力。
3. Softmax 似然函数的权重参数优化
修复了 SoftmaxLikelihood 中 mixing_weights=False 时仍然添加可学习参数 W 的问题。Softmax 似然常用于多分类问题,这一修复确保了当用户明确不需要混合权重时,模型不会引入不必要的参数,保持了模型的简洁性和计算效率。
4. 类型注解增强
GPyTorch 团队持续改进代码的类型注解(Type Annotations),特别是在 gpytorch.Module 和线性核相关部分。类型注解不仅提高了代码的可读性和可维护性,还能帮助开发者在使用 IDE 时获得更好的代码补全和错误检查支持。
性能优化与错误修复
1. 多任务高斯过程改进
MTMVN.from_independent_mvns 方法现在支持广播批处理形状(broadcasting batch shapes),这一改进使得在多任务场景下构建高斯过程模型更加灵活和高效。同时,MVN 类新增了 unsqueeze 方法,并优化了 expand() 方法以支持非惰性(non-lazy)MVN 并尽可能重用 scale_tril。
2. 幻想(Fantasy)模型的 JIT 追踪支持
修复了在幻想(Fantasy)模型场景下无法进行 JIT 追踪的问题。幻想模型是高斯过程中用于条件预测的重要技术,这一修复使得模型在幻想后仍能保持 JIT 编译能力,对于生产环境部署尤为重要。
3. 梯度块符号修正
修正了梯度块计算中的符号错误,确保了梯度计算的准确性。在优化高斯过程超参数时,准确的梯度计算对于收敛到最优解至关重要。
文档与示例改进
本次版本还包含多项文档修正和示例改进,包括修复了多处拼写错误和文档字符串中的描述不准确问题。例如修正了 IndexKernel 文档字符串中的错误,以及 likelihood.py 中的多处拼写错误。这些改进虽然看似微小,但对于新用户的学习体验和现有用户的使用体验都有显著提升。
向后兼容性说明
v1.14 版本移除了已被弃用的惰性张量(lazy tensor)实现,用户应确保代码中不再使用这些已被移除的功能。同时,由于支持了 PyTorch 2.0,建议用户检查自定义扩展是否与新版本兼容。
总结
GPyTorch v1.14 版本在保持核心功能稳定的同时,通过支持最新的 Python 和 PyTorch 版本、增强核函数灵活性、改进类型系统以及修复多个关键问题,进一步提升了库的可靠性、性能和用户体验。这些改进使得 GPyTorch 在科学计算和机器学习应用中的表现更加出色,为研究人员和实践者提供了更强大的高斯过程建模工具。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0313- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









