Botorch中HeteroskedasticSingleTaskGP模型训练时的反向传播问题分析
2025-06-25 14:24:18作者:董宙帆
问题背景
在使用Botorch库进行贝叶斯优化时,研究人员发现当使用HeteroskedasticSingleTaskGP模型处理特定数据集时,会出现"Trying to backward through the graph a second time"的反向传播错误。这个问题在模型第二次尝试拟合时出现,导致优化过程意外终止。
问题现象
具体表现为当使用fit_gpytorch_mll函数训练HeteroskedasticSingleTaskGP模型时,系统抛出RuntimeError异常,提示"试图第二次反向传播图"的错误。该问题具有以下特点:
- 数据相关性:问题只在特定数据集上出现,修改或删除某些数据点(如最后一个数据点)可以避免错误
- 重现性:问题可以稳定重现,特别是在使用示例代码提供的数据时
- 环境无关性:在不同版本的Python、Botorch和PyTorch环境下都可能出现
技术分析
错误本质
该错误的核心是PyTorch的反向传播机制限制。在PyTorch中,默认情况下计算图在完成一次反向传播后会被释放,这是为了节省内存。当程序尝试第二次反向传播时,如果没有显式设置retain_graph=True,就会触发这个异常。
问题根源
经过深入分析,发现这个问题与GPyTorch库中的一个已知问题相关。具体来说:
- 在模型拟合过程中,优化器可能会因数值问题(如ABNORMAL_TERMINATION_IN_LNSRCH)而失败
- 第一次失败的拟合尝试会留下部分梯度信息
- 当进行第二次拟合尝试时,这些残留的梯度信息导致反向传播冲突
解决方案
该问题已在GPyTorch 1.12版本中得到修复。升级到GPyTorch 1.12或更高版本可以彻底解决这个问题。对于无法立即升级的用户,可以尝试以下临时解决方案:
- 确保所有输入张量都调用了.detach()方法,避免不必要的梯度计算
- 在模型拟合前手动清除梯度缓存
- 对输入数据进行标准化处理,减少数值不稳定性
最佳实践建议
为了避免类似问题,在使用Botorch进行高斯过程建模时,建议:
- 始终使用双精度浮点数(torch.float64)而非单精度,提高数值稳定性
- 对输入数据进行标准化处理,使其落在合理范围内
- 使用最新版本的GPyTorch和Botorch库
- 在BO循环中,确保新添加的观测数据已经调用了.detach()
- 监控优化过程中的警告信息,特别是"ABNORMAL_TERMINATION_IN_LNSRCH"这类优化警告
总结
Botorch库中的HeteroskedasticSingleTaskGP模型在特定条件下会出现反向传播问题,这主要是由于GPyTorch早期版本中的缺陷导致的。通过升级到GPyTorch 1.12+版本,配合良好的数据预处理实践,可以有效避免此类问题。对于深度学习在贝叶斯优化中的应用,理解底层自动微分机制和梯度计算原理对于调试此类问题至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
273
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692