Botorch中HeteroskedasticSingleTaskGP模型训练时的反向传播问题分析
2025-06-25 01:23:11作者:董宙帆
问题背景
在使用Botorch库进行贝叶斯优化时,研究人员发现当使用HeteroskedasticSingleTaskGP模型处理特定数据集时,会出现"Trying to backward through the graph a second time"的反向传播错误。这个问题在模型第二次尝试拟合时出现,导致优化过程意外终止。
问题现象
具体表现为当使用fit_gpytorch_mll函数训练HeteroskedasticSingleTaskGP模型时,系统抛出RuntimeError异常,提示"试图第二次反向传播图"的错误。该问题具有以下特点:
- 数据相关性:问题只在特定数据集上出现,修改或删除某些数据点(如最后一个数据点)可以避免错误
- 重现性:问题可以稳定重现,特别是在使用示例代码提供的数据时
- 环境无关性:在不同版本的Python、Botorch和PyTorch环境下都可能出现
技术分析
错误本质
该错误的核心是PyTorch的反向传播机制限制。在PyTorch中,默认情况下计算图在完成一次反向传播后会被释放,这是为了节省内存。当程序尝试第二次反向传播时,如果没有显式设置retain_graph=True,就会触发这个异常。
问题根源
经过深入分析,发现这个问题与GPyTorch库中的一个已知问题相关。具体来说:
- 在模型拟合过程中,优化器可能会因数值问题(如ABNORMAL_TERMINATION_IN_LNSRCH)而失败
- 第一次失败的拟合尝试会留下部分梯度信息
- 当进行第二次拟合尝试时,这些残留的梯度信息导致反向传播冲突
解决方案
该问题已在GPyTorch 1.12版本中得到修复。升级到GPyTorch 1.12或更高版本可以彻底解决这个问题。对于无法立即升级的用户,可以尝试以下临时解决方案:
- 确保所有输入张量都调用了.detach()方法,避免不必要的梯度计算
- 在模型拟合前手动清除梯度缓存
- 对输入数据进行标准化处理,减少数值不稳定性
最佳实践建议
为了避免类似问题,在使用Botorch进行高斯过程建模时,建议:
- 始终使用双精度浮点数(torch.float64)而非单精度,提高数值稳定性
- 对输入数据进行标准化处理,使其落在合理范围内
- 使用最新版本的GPyTorch和Botorch库
- 在BO循环中,确保新添加的观测数据已经调用了.detach()
- 监控优化过程中的警告信息,特别是"ABNORMAL_TERMINATION_IN_LNSRCH"这类优化警告
总结
Botorch库中的HeteroskedasticSingleTaskGP模型在特定条件下会出现反向传播问题,这主要是由于GPyTorch早期版本中的缺陷导致的。通过升级到GPyTorch 1.12+版本,配合良好的数据预处理实践,可以有效避免此类问题。对于深度学习在贝叶斯优化中的应用,理解底层自动微分机制和梯度计算原理对于调试此类问题至关重要。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0378- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
328
377

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
28
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58