Apache Arrow项目中偏态与峰度计算的偏差调整机制
2025-05-18 17:16:42作者:范靓好Udolf
Apache Arrow作为高性能内存分析引擎,其内置的统计函数库提供了偏态(skew)和峰度(kurtosis)等关键统计量的计算功能。近期社区发现其计算结果与Pandas存在差异,这引发了关于统计量偏差调整机制的深入讨论。
计算差异现象分析
当对包含缺失值的数据序列[1.0, 2.0, 3.0, 40.0, NaN]计算偏态时,Pandas和Arrow给出了不同结果:
- Pandas计算结果:1.988947740397821
- Arrow计算结果:1.14831951332278
这种差异并非由缺失值处理方式导致,而是源于两者采用了不同的偏差调整方法。Arrow当前实现的是有偏估计(biased estimator),而Pandas默认使用无偏估计(unbiased estimator)。
统计量偏差的本质
在统计学中,样本统计量作为总体参数的估计可能具有偏差。对于高阶矩统计量:
- 有偏估计直接使用样本矩计算,计算简单但可能存在系统性偏差
- 无偏估计通过调整因子修正偏差,更接近总体参数但计算稍复杂
具体到偏态计算,无偏估计会引入基于样本量的调整系数,这在样本量较小时差异尤为明显。
技术实现方案
Apache Arrow社区决定扩展其统计函数接口,增加偏差调整选项:
- 保留现有有偏估计作为默认行为,确保向后兼容
- 新增
bias布尔参数,允许用户显式选择偏差调整方式 - 实现与SciPy一致的API设计,便于跨平台一致性
这种设计既满足了需要快速计算的场景(使用有偏估计),也支持需要精确统计推断的场景(使用无偏估计)。
对数据分析生态的影响
这一改进使得:
- Pandas的Arrow后端可以保持计算一致性
- 用户可以根据数据特点灵活选择估计方法
- 增强了Arrow与其他科学计算库的互操作性
在性能敏感的大数据分析场景,用户可以选择有偏估计获得更快计算速度;而在统计建模等需要精确估计的场景,则可选用无偏估计。
最佳实践建议
对于从Pandas迁移到Arrow的用户:
- 注意默认行为的差异
- 显式指定
bias=False以获得与Pandas一致的结果 - 在大数据场景下评估两种方法的性能差异
这一改进体现了Apache Arrow项目对计算精确性和灵活性的平衡考量,为数据科学工作流提供了更丰富的选择。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134