开源推荐系统项目教程
2024-09-14 15:51:13作者:何举烈Damon
项目介绍
本项目是一个基于深度学习的推荐系统开源项目,项目地址为:DeepGraphLearning/RecommenderSystems。该项目旨在提供一个全面的推荐系统框架,支持多种推荐算法和模型,包括但不限于协同过滤、内容过滤和混合推荐方法。项目的主要目标是帮助研究人员和开发者快速构建和实验推荐系统,同时提供丰富的文档和示例代码。
项目快速启动
环境准备
在开始之前,请确保您的开发环境已经安装了以下依赖:
- Python 3.7 或更高版本
- PyTorch 1.6 或更高版本
- NumPy
- Pandas
您可以使用以下命令安装这些依赖:
pip install torch numpy pandas
克隆项目
首先,克隆项目到本地:
git clone https://github.com/DeepGraphLearning/RecommenderSystems.git
cd RecommenderSystems
运行示例代码
项目中包含多个示例代码,您可以通过运行这些示例来快速了解项目的基本使用方法。以下是一个简单的协同过滤示例:
import torch
from models.collaborative_filtering import CollaborativeFiltering
# 创建模型
model = CollaborativeFiltering(num_users=1000, num_items=500, embedding_dim=32)
# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
# 假设我们有一些用户-物品交互数据
user_ids = torch.LongTensor([0, 1, 2])
item_ids = torch.LongTensor([0, 1, 2])
ratings = torch.FloatTensor([5.0, 4.0, 3.0])
# 前向传播
predictions = model(user_ids, item_ids)
loss = criterion(predictions, ratings)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch {epoch}, Loss: {loss.item()}')
应用案例和最佳实践
应用案例
-
电子商务推荐:在电子商务平台上,推荐系统可以帮助用户发现他们可能感兴趣的商品。通过分析用户的购买历史和浏览行为,推荐系统可以提供个性化的商品推荐。
-
音乐和视频推荐:音乐和视频流媒体平台可以使用推荐系统来推荐用户可能喜欢的歌曲或视频。通过分析用户的播放历史和偏好,推荐系统可以提供个性化的内容推荐。
最佳实践
-
数据预处理:在构建推荐系统之前,确保数据已经过适当的预处理。这包括处理缺失值、归一化数据以及处理异常值。
-
模型选择:根据具体的应用场景选择合适的推荐模型。例如,如果用户数据较为稀疏,可以考虑使用基于内容的推荐方法;如果用户数据较为丰富,可以考虑使用协同过滤方法。
-
评估和调优:使用适当的评估指标(如准确率、召回率、覆盖率等)来评估推荐系统的效果,并根据评估结果进行模型调优。
典型生态项目
- LightFM:一个混合推荐系统库,支持基于内容的推荐和协同过滤。
- Surprise:一个用于构建和分析推荐系统的Python库,支持多种推荐算法。
- TensorRec:一个基于TensorFlow的推荐系统框架,支持多种深度学习模型。
这些生态项目可以与本项目结合使用,以构建更强大的推荐系统解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.26 K
Ascend Extension for PyTorch
Python
231
264
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869