推荐文章:引领您进入深度学习实验的新纪元 —— Neural Pipeline
2024-05-21 16:57:59作者:晏闻田Solitary
推荐文章:引领您进入深度学习实验的新纪元 —— Neural Pipeline
1、项目介绍
Neural Pipeline 是一个基于 PyTorch 的神经网络训练管道,旨在标准化和加速深度学习的实验过程。这个精心设计的框架只有大约2K行的核心代码,经过充分测试,可以为您的工作提供强大而稳定的基础。
2、项目技术分析
Neural Pipeline 提供了灵活性和可定制化的训练流程,包括:
- 检查点管理:独立于源设备和目标设备的训练过程恢复功能。
- 指标处理与可视化:内置支持 Tensorboard 和 Matplotlib,同时允许您使用自定义监视器。
- 最佳实践集成:如学习率衰减和困难负样本挖掘。
- 数据管理:通过 DVC 兼容的指标日志记录和比较。
其简洁的API使您可以快速上手,下面是一个简单的训练示例:
import torch
from neural_pipeline.builtin.monitors.tensorboard import TensorboardMonitor
from neural_pipeline.monitoring import LogMonitor
from neural_pipeline import DataProducer, TrainConfig, TrainStage, \
ValidationStage, Trainer, FileStructManager
from your_module import YourNet, YourDataset
fsm = FileStructManager(base_dir='data', is_continue=False)
model = YourNet().cuda()
# 数据加载
train_dataset = DataProducer([YourDataset()], batch_size=4, num_workers=2)
validation_dataset = DataProducer([YourDataset()], batch_size=4, num_workers=2)
# 训练配置
train_config = TrainConfig(model, [TrainStage(train_dataset),
ValidationStage(validation_dataset)], torch.nn.NLLLoss(),
torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.5))
# 创建并启动训练
trainer = Trainer(train_config, fsm, torch.device('cuda:0')).set_epoch_num(50)
trainer.monitor_hub.add_monitor(TensorboardMonitor(fsm, is_continue=False))\
.add_monitor(LogMonitor(fsm))
trainer.train()
3、项目及技术应用场景
Neural Pipeline 可广泛应用于各种深度学习任务,包括但不限于图像分类(如MNIST)、语义分割等。提供的实例包括 MNIST 分类和图像分割,还有如何从已有的训练过程恢复训练的功能。
4、项目特点
- 高效且轻量级:核心代码量小,无需重复编写基础结构代码。
- 测试覆盖率高:确保代码质量和稳定性。
- 易于扩展:方便添加新的训练阶段、损失函数和优化器,以及自定义监测和可视化工具。
- 全面的文档:详细的文档指导,帮助快速入门,并提供了多个实战例子。
- 社区支持:在 Gitter 上有一个活跃的社区,能够及时解答问题和分享经验。
安装也十分简单,通过 PyPI 直接运行 pip install neural-pipeline 即可开始使用。对于依赖的 builtin 模块,可以额外安装 tensorboardX 和 matplotlib。
立即尝试 Neural Pipeline,让您的深度学习实验更有效率,成果更显著!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
241
2.38 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1 K
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
590
118
Ascend Extension for PyTorch
Python
79
112
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
56