推荐文章:引领您进入深度学习实验的新纪元 —— Neural Pipeline
2024-05-21 16:57:59作者:晏闻田Solitary
推荐文章:引领您进入深度学习实验的新纪元 —— Neural Pipeline
1、项目介绍
Neural Pipeline 是一个基于 PyTorch 的神经网络训练管道,旨在标准化和加速深度学习的实验过程。这个精心设计的框架只有大约2K行的核心代码,经过充分测试,可以为您的工作提供强大而稳定的基础。
2、项目技术分析
Neural Pipeline 提供了灵活性和可定制化的训练流程,包括:
- 检查点管理:独立于源设备和目标设备的训练过程恢复功能。
- 指标处理与可视化:内置支持 Tensorboard 和 Matplotlib,同时允许您使用自定义监视器。
- 最佳实践集成:如学习率衰减和困难负样本挖掘。
- 数据管理:通过 DVC 兼容的指标日志记录和比较。
其简洁的API使您可以快速上手,下面是一个简单的训练示例:
import torch
from neural_pipeline.builtin.monitors.tensorboard import TensorboardMonitor
from neural_pipeline.monitoring import LogMonitor
from neural_pipeline import DataProducer, TrainConfig, TrainStage, \
ValidationStage, Trainer, FileStructManager
from your_module import YourNet, YourDataset
fsm = FileStructManager(base_dir='data', is_continue=False)
model = YourNet().cuda()
# 数据加载
train_dataset = DataProducer([YourDataset()], batch_size=4, num_workers=2)
validation_dataset = DataProducer([YourDataset()], batch_size=4, num_workers=2)
# 训练配置
train_config = TrainConfig(model, [TrainStage(train_dataset),
ValidationStage(validation_dataset)], torch.nn.NLLLoss(),
torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.5))
# 创建并启动训练
trainer = Trainer(train_config, fsm, torch.device('cuda:0')).set_epoch_num(50)
trainer.monitor_hub.add_monitor(TensorboardMonitor(fsm, is_continue=False))\
.add_monitor(LogMonitor(fsm))
trainer.train()
3、项目及技术应用场景
Neural Pipeline 可广泛应用于各种深度学习任务,包括但不限于图像分类(如MNIST)、语义分割等。提供的实例包括 MNIST 分类和图像分割,还有如何从已有的训练过程恢复训练的功能。
4、项目特点
- 高效且轻量级:核心代码量小,无需重复编写基础结构代码。
- 测试覆盖率高:确保代码质量和稳定性。
- 易于扩展:方便添加新的训练阶段、损失函数和优化器,以及自定义监测和可视化工具。
- 全面的文档:详细的文档指导,帮助快速入门,并提供了多个实战例子。
- 社区支持:在 Gitter 上有一个活跃的社区,能够及时解答问题和分享经验。
安装也十分简单,通过 PyPI 直接运行 pip install neural-pipeline 即可开始使用。对于依赖的 builtin 模块,可以额外安装 tensorboardX 和 matplotlib。
立即尝试 Neural Pipeline,让您的深度学习实验更有效率,成果更显著!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869