Brax项目中自定义动作空间的实现方法
2025-06-29 01:05:03作者:苗圣禹Peter
概述
在机器人仿真与控制领域,动作空间(action space)的定义对于强化学习算法的性能有着重要影响。Google的Brax物理仿真引擎作为一款高性能的刚体动力学模拟器,其默认动作空间通常直接对应于执行器的控制信号。然而,在实际应用中,开发者可能需要更灵活的动作空间定义方式。
动作空间的基本概念
动作空间在强化学习中定义了智能体可以执行的动作范围。在机器人控制场景中,常见的动作空间类型包括:
- 直接控制信号:直接输出电机扭矩或力
- 目标位置控制:输出关节的目标位置,通过PD控制器转换为实际控制信号
- 目标速度控制:输出关节的目标速度
- 混合控制:同时包含位置和速度控制
Brax默认采用第一种方式,即直接控制信号作为动作空间。这种方式虽然直接,但在某些场景下可能不够直观或难以训练。
自定义动作空间的实现方法
在Brax中实现自定义动作空间(特别是目标位置控制)可以通过以下几种方式:
方法一:重写action_size属性
虽然Brax的基础环境类Env中的action_size属性没有显式的setter方法,但在Python中可以通过属性重写(override)的方式实现自定义:
class MyCustomEnv(env.Env):
@property
def action_size(self):
# 返回非根关节的数量作为动作空间维度
return self.sys.num_joints - 1 # 减去根关节
def step(self, action):
# 将动作(目标关节位置)转换为PD控制信号
q_target = action # 假设动作就是目标关节位置
q_current = self.state.qpos[1:] # 获取当前关节位置(跳过根关节)
qd_current = self.state.qvel[1:] # 获取当前关节速度
# 计算PD控制信号
kp = 100.0 # 比例增益
kd = 10.0 # 微分增益
ctrl = kp * (q_target - q_current) - kd * qd_current
# 调用父类的step方法
return super().step(ctrl)
方法二:修改XML模型定义
另一种方法是通过修改Brax使用的XML模型文件,增加额外的执行器来实现更复杂的控制方式:
- 在XML中为每个关节定义位置执行器
- 设置适当的PD增益参数
- 确保动作空间维度与执行器数量匹配
这种方法更接近底层实现,但需要对MuJoCo XML格式有较深理解。
技术细节与注意事项
实现自定义动作空间时需要注意以下几点:
- 维度匹配:确保自定义动作空间的维度与后续处理逻辑一致
- 数值范围:合理缩放动作值范围,使其在有效区间内
- PD参数调优:位置控制模式下的PD增益参数对系统稳定性至关重要
- 根关节处理:通常需要特别处理根关节(自由关节)的运动
- 实时性考虑:位置控制模式会引入额外的计算开销
实际应用建议
在实际项目中,选择动作空间实现方式应考虑以下因素:
- 任务复杂度:简单任务可能适合直接控制,复杂任务可能受益于位置控制
- 训练效率:位置控制通常更容易训练但可能限制最终性能
- 物理真实性:考虑实际机器人系统的控制接口
- 算法兼容性:确保选择的动作空间与使用的强化学习算法兼容
通过灵活运用上述方法,开发者可以在Brax框架下实现各种自定义动作空间,满足不同机器人控制任务的需求。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493