学习TSP项目教程
2024-09-26 12:54:51作者:裴锟轩Denise
1. 项目介绍
learning-tsp 是一个开源项目,旨在通过神经网络解决旅行商问题(TSP)。该项目基于论文《Learning TSP Requires Rethinking Generalization》,该论文在2021年的国际约束编程会议(CP 2021)上被接受。项目的主要目标是探索和改进神经网络在解决大规模TSP问题时的泛化能力。
项目的主要特点包括:
- 使用图神经网络(GNN)进行图嵌入。
- 提供多种解码策略,包括非自回归解码和自回归解码。
- 支持监督学习和强化学习两种训练方式。
- 开源框架和数据集,鼓励社区进一步研究和开发。
2. 项目快速启动
环境准备
首先,确保你已经安装了以下软件和库:
- Ubuntu 16.04
- Python 3.6.7
- PyTorch 1.2.0
- CUDA 10.0
推荐使用Anaconda进行环境配置:
# 克隆项目仓库
git clone https://github.com/chaitjo/learning-tsp.git
cd learning-tsp
# 创建并激活新的conda环境
conda create -n tsp python=3.6.7
source activate tsp
# 安装所有依赖项和Jupyter Lab
conda install pytorch=1.2.0 cudatoolkit=10.0 -c pytorch
conda install numpy scipy cython tqdm scikit-learn matplotlib seaborn tensorboard pandas
conda install jupyterlab -c conda-forge
pip install tensorboard_logger
# 下载数据集并解压到/data/tsp目录
pip install gdown
gdown https://drive.google.com/uc?id=152mpCze-v4d0m9kdsCeVkLdHFkjeDeF5
tar -xvzf tsp-data.tar.gz -C /data/tsp/
训练模型
使用以下命令进行模型训练:
CUDA_VISIBLE_DEVICES=<available-gpu-ids> python run.py --problem tsp --model attention --encoder gnn --baseline rollout --min_size 20 --max_size 50 --batch_size 128 --train_dataset data/tsp/tsp20_train_concorde.txt --val_datasets data/tsp/tsp20_val_concorde.txt data/tsp/tsp50_val_concorde.txt --lr_model 1e-4 --run_name <custom_run_name>
模型评估
使用以下命令进行模型评估:
CUDA_VISIBLE_DEVICES=<available-gpu-ids> python eval.py data/tsp/tsp10-200_concorde.txt --model outputs/<custom_run_name>_<datetime>/ --decode_strategy greedy --eval_batch_size 128 --width 1
3. 应用案例和最佳实践
应用案例
learning-tsp 项目可以应用于各种需要解决旅行商问题的场景,例如:
- 物流配送路径优化
- 制造业中的生产调度
- 计算机网络中的路由优化
最佳实践
- 数据集选择:根据实际问题选择合适的数据集进行训练和评估。
- 模型选择:根据问题的复杂度和规模选择合适的模型架构和解码策略。
- 超参数调优:通过实验调整学习率、批量大小等超参数,以获得最佳性能。
4. 典型生态项目
- Concorde TSP Solver:一个经典的TSP求解器,用于生成高质量的TSP数据集。
- Attention, Learn to Solve Routing Problems:另一个基于注意力机制的TSP求解项目,提供了不同的模型架构和训练方法。
- Graph Neural Networks for Combinatorial Optimization:一个专注于使用图神经网络解决组合优化问题的项目,提供了多种GNN架构和应用案例。
通过结合这些生态项目,可以进一步扩展和优化 learning-tsp 的功能和性能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881