学习TSP项目教程
2024-09-26 12:54:51作者:裴锟轩Denise
1. 项目介绍
learning-tsp 是一个开源项目,旨在通过神经网络解决旅行商问题(TSP)。该项目基于论文《Learning TSP Requires Rethinking Generalization》,该论文在2021年的国际约束编程会议(CP 2021)上被接受。项目的主要目标是探索和改进神经网络在解决大规模TSP问题时的泛化能力。
项目的主要特点包括:
- 使用图神经网络(GNN)进行图嵌入。
- 提供多种解码策略,包括非自回归解码和自回归解码。
- 支持监督学习和强化学习两种训练方式。
- 开源框架和数据集,鼓励社区进一步研究和开发。
2. 项目快速启动
环境准备
首先,确保你已经安装了以下软件和库:
- Ubuntu 16.04
- Python 3.6.7
- PyTorch 1.2.0
- CUDA 10.0
推荐使用Anaconda进行环境配置:
# 克隆项目仓库
git clone https://github.com/chaitjo/learning-tsp.git
cd learning-tsp
# 创建并激活新的conda环境
conda create -n tsp python=3.6.7
source activate tsp
# 安装所有依赖项和Jupyter Lab
conda install pytorch=1.2.0 cudatoolkit=10.0 -c pytorch
conda install numpy scipy cython tqdm scikit-learn matplotlib seaborn tensorboard pandas
conda install jupyterlab -c conda-forge
pip install tensorboard_logger
# 下载数据集并解压到/data/tsp目录
pip install gdown
gdown https://drive.google.com/uc?id=152mpCze-v4d0m9kdsCeVkLdHFkjeDeF5
tar -xvzf tsp-data.tar.gz -C /data/tsp/
训练模型
使用以下命令进行模型训练:
CUDA_VISIBLE_DEVICES=<available-gpu-ids> python run.py --problem tsp --model attention --encoder gnn --baseline rollout --min_size 20 --max_size 50 --batch_size 128 --train_dataset data/tsp/tsp20_train_concorde.txt --val_datasets data/tsp/tsp20_val_concorde.txt data/tsp/tsp50_val_concorde.txt --lr_model 1e-4 --run_name <custom_run_name>
模型评估
使用以下命令进行模型评估:
CUDA_VISIBLE_DEVICES=<available-gpu-ids> python eval.py data/tsp/tsp10-200_concorde.txt --model outputs/<custom_run_name>_<datetime>/ --decode_strategy greedy --eval_batch_size 128 --width 1
3. 应用案例和最佳实践
应用案例
learning-tsp 项目可以应用于各种需要解决旅行商问题的场景,例如:
- 物流配送路径优化
- 制造业中的生产调度
- 计算机网络中的路由优化
最佳实践
- 数据集选择:根据实际问题选择合适的数据集进行训练和评估。
- 模型选择:根据问题的复杂度和规模选择合适的模型架构和解码策略。
- 超参数调优:通过实验调整学习率、批量大小等超参数,以获得最佳性能。
4. 典型生态项目
- Concorde TSP Solver:一个经典的TSP求解器,用于生成高质量的TSP数据集。
- Attention, Learn to Solve Routing Problems:另一个基于注意力机制的TSP求解项目,提供了不同的模型架构和训练方法。
- Graph Neural Networks for Combinatorial Optimization:一个专注于使用图神经网络解决组合优化问题的项目,提供了多种GNN架构和应用案例。
通过结合这些生态项目,可以进一步扩展和优化 learning-tsp 的功能和性能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0120
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
490
3.61 K
Ascend Extension for PyTorch
Python
299
331
暂无简介
Dart
739
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
282
120
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
471
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
297
344
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7