Attention-Learn-to-Route 项目教程
2024-09-13 01:01:27作者:段琳惟
项目介绍
Attention-Learn-to-Route 是一个基于注意力机制的模型,用于学习解决不同的路由问题,如旅行商问题(TSP)、车辆路径问题(VRP)、定向运动问题(OP)和奖品收集TSP(PCTSP)。该项目使用强化学习中的REINFORCE算法进行训练,并采用贪婪的推出基准。该模型在解决这些组合优化问题时表现出色,接近最优解。
项目快速启动
环境准备
首先,确保你的环境中安装了以下依赖:
- Python >= 3.8
- NumPy
- SciPy
- PyTorch >= 1.7
- tqdm
- tensorboard_logger
- Matplotlib(可选,仅用于绘图)
你可以通过以下命令安装这些依赖:
pip install numpy scipy torch tqdm tensorboard_logger matplotlib
克隆项目
克隆项目到本地:
git clone https://github.com/wouterkool/attention-learn-to-route.git
cd attention-learn-to-route
生成数据
生成训练、验证和测试数据:
python generate_data.py --problem all --name validation --seed 4321
python generate_data.py --problem all --name test --seed 1234
训练模型
使用以下命令训练TSP实例(20个节点)并使用rollout作为REINFORCE基线:
python run.py --graph_size 20 --baseline rollout --run_name 'tsp20_rollout' --val_dataset data/tsp/tsp20_validation_seed4321.pkl
评估模型
使用以下命令评估模型:
python eval.py data/tsp/tsp20_test_seed1234.pkl --model pretrained/tsp_20 --decode_strategy greedy
应用案例和最佳实践
应用案例
- 旅行商问题(TSP):该项目在解决TSP问题上表现出色,接近最优解。
- 车辆路径问题(VRP):通过调整输入参数,可以解决不同变体的VRP问题。
- 定向运动问题(OP):模型在OP问题上也有很好的表现。
- 奖品收集TSP(PCTSP):通过调整模型参数,可以解决PCTSP问题。
最佳实践
- 数据生成:在训练前生成足够的数据集,确保模型有足够的训练数据。
- 超参数调整:根据具体问题调整超参数,如
graph_size、baseline等。 - 多GPU训练:使用多GPU训练可以加速训练过程,提高效率。
典型生态项目
- PyTorch:该项目基于PyTorch框架,利用其强大的GPU加速和自动求导功能。
- TensorBoard:用于监控训练过程,可视化损失和性能指标。
- NumPy:用于数据处理和数值计算。
- SciPy:提供科学计算工具,如优化算法。
通过以上步骤,你可以快速启动并使用Attention-Learn-to-Route项目解决各种路由问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355