Depth-Anything项目中不同规模ViT模型的深度预测范围差异分析
2025-05-29 11:14:27作者:蔡怀权
在计算机视觉领域,深度估计是一个重要的研究方向。Depth-Anything项目基于视觉Transformer(ViT)架构,提供了三种不同规模的模型:vits(小型)、vitb(基础型)和vitl(大型)。本文深入分析这些模型在深度预测范围上的差异现象及其背后的技术原理。
现象观察
当使用Depth-Anything项目对同一图像进行深度预测时,不同规模的模型输出的深度/视差图在数值范围上表现出明显差异:
- vits模型:输出范围约0-20
- vitb模型:输出范围约0-100
- vitl模型:输出范围约0-220
尽管数值范围不同,但三种模型的预测结果在视觉表现上却非常相似,大型模型(vitl)仅在细节上略有优势。这一现象引发了关于模型训练目标和输出特性的思考。
技术原理分析
1. 仿射不变损失函数
Depth-Anything项目采用了"仿射不变损失"(affine-invariant loss)作为训练目标。这种损失函数的核心特点是:
- 在计算预测误差前,先对预测结果和真实深度进行归一化处理
- 模型只需关注深度值的相对关系,而非绝对数值
- 允许输出结果存在任意的线性变换(缩放和平移)
这种设计使得模型在训练过程中不关心输出的绝对数值范围,只关注保持正确的深度顺序关系。因此,不同规模的模型可能收敛到不同的数值范围,但都能保持正确的深度结构。
2. DINOv2编码器的特性
Depth-Anything使用了DINOv2作为图像编码器,该架构有一个已知特性:
- 深层特征会产生更高范数的token
- 模型规模越大,最终输出层的特征范数越高
- 这种特性会直接影响深度预测的数值范围
研究表明,视觉Transformer的深层倾向于产生高范数特征,这种现象在"Vision Transformers Need Registers"论文中有详细讨论。模型规模越大,这种特征放大效应越明显,导致vitl的输出范围显著大于vits。
实际影响与建议
对于实际应用,开发者需要注意:
- 不同规模模型的输出需要分别进行归一化处理
- 比较模型性能时应关注深度结构的准确性而非数值范围
- 大型模型虽然输出范围更大,但并不意味着深度估计更精确
- 在部署时需要考虑输出范围的差异对后续处理的影响
理解这一现象有助于开发者更好地利用Depth-Anything项目,根据实际需求选择合适的模型规模,并正确处理模型的输出结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19