HFT-CNN 开源项目教程
2024-09-13 22:00:14作者:管翌锬
项目介绍
HFT-CNN(Hierarchical Fine-Tuning based CNN)是一个基于卷积神经网络(CNN)的多标签短文本分类项目。该项目的主要目标是利用层次结构(HS)来解决短文本分类中的数据稀疏问题。与传统的非层次模型不同,HFT-CNN通过利用预定义类别之间的层次关系,有效地提升了分类性能。项目提供了四种不同的模型实现,包括平坦模型、无微调层次模型、层次微调模型和XML-CNN模型。
项目快速启动
环境准备
在开始之前,请确保您的环境满足以下要求:
- Python 3.5.4 或更高版本
- Chainer 4.0.0 或更高版本
- CuPy 4.0.0 或更高版本
安装步骤
-
克隆项目
git clone https://github.com/ShimShim46/HFT-CNN.git cd HFT-CNN -
安装依赖
pip install -r requirements.txt或者使用 Anaconda 创建虚拟环境:
conda env create -f hft_cnn_env.yml source activate hft_cnn_env -
运行示例
使用提供的示例数据进行快速分类:
bash example.sh这将使用平坦模型对示例数据进行分类,并生成结果文件。
应用案例和最佳实践
应用案例
HFT-CNN 适用于需要对短文本进行多标签分类的场景,例如:
- 社交媒体分析:对社交媒体上的短文本进行情感分类或主题分类。
- 产品评论分类:对电商网站上的产品评论进行多标签分类,识别用户对产品的不同方面的评价。
- 新闻分类:对新闻标题或摘要进行分类,识别新闻的主题和类别。
最佳实践
- 数据预处理:确保输入数据的格式正确,标签之间用制表符分隔,文档中的单词用空格分隔。
- 模型选择:根据数据的层次结构选择合适的模型。如果数据具有明显的层次结构,建议使用层次微调模型(HFT模型)。
- 超参数调优:通过调整学习率、批量大小等超参数,优化模型的性能。
典型生态项目
相关项目
- Chainer:HFT-CNN 基于 Chainer 框架实现,Chainer 是一个灵活的深度学习框架,支持动态计算图。
- CuPy:CuPy 是一个用于 GPU 加速的 NumPy 兼容库,HFT-CNN 使用 CuPy 进行高效的矩阵运算。
- fastText:HFT-CNN 使用 fastText 生成的词嵌入来表示文本数据,fastText 是一个高效的文本分类和词向量训练工具。
集成与扩展
HFT-CNN 可以与其他自然语言处理(NLP)工具和框架集成,例如:
- NLTK:用于文本预处理和数据清洗。
- TensorFlow:用于构建更复杂的深度学习模型。
- Gensim:用于生成和加载词向量。
通过这些集成,可以进一步提升 HFT-CNN 在实际应用中的性能和灵活性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
628
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
74
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K