HFT-CNN 开源项目教程
2024-09-13 17:52:57作者:管翌锬
项目介绍
HFT-CNN(Hierarchical Fine-Tuning based CNN)是一个基于卷积神经网络(CNN)的多标签短文本分类项目。该项目的主要目标是利用层次结构(HS)来解决短文本分类中的数据稀疏问题。与传统的非层次模型不同,HFT-CNN通过利用预定义类别之间的层次关系,有效地提升了分类性能。项目提供了四种不同的模型实现,包括平坦模型、无微调层次模型、层次微调模型和XML-CNN模型。
项目快速启动
环境准备
在开始之前,请确保您的环境满足以下要求:
- Python 3.5.4 或更高版本
- Chainer 4.0.0 或更高版本
- CuPy 4.0.0 或更高版本
安装步骤
-
克隆项目
git clone https://github.com/ShimShim46/HFT-CNN.git cd HFT-CNN -
安装依赖
pip install -r requirements.txt或者使用 Anaconda 创建虚拟环境:
conda env create -f hft_cnn_env.yml source activate hft_cnn_env -
运行示例
使用提供的示例数据进行快速分类:
bash example.sh这将使用平坦模型对示例数据进行分类,并生成结果文件。
应用案例和最佳实践
应用案例
HFT-CNN 适用于需要对短文本进行多标签分类的场景,例如:
- 社交媒体分析:对社交媒体上的短文本进行情感分类或主题分类。
- 产品评论分类:对电商网站上的产品评论进行多标签分类,识别用户对产品的不同方面的评价。
- 新闻分类:对新闻标题或摘要进行分类,识别新闻的主题和类别。
最佳实践
- 数据预处理:确保输入数据的格式正确,标签之间用制表符分隔,文档中的单词用空格分隔。
- 模型选择:根据数据的层次结构选择合适的模型。如果数据具有明显的层次结构,建议使用层次微调模型(HFT模型)。
- 超参数调优:通过调整学习率、批量大小等超参数,优化模型的性能。
典型生态项目
相关项目
- Chainer:HFT-CNN 基于 Chainer 框架实现,Chainer 是一个灵活的深度学习框架,支持动态计算图。
- CuPy:CuPy 是一个用于 GPU 加速的 NumPy 兼容库,HFT-CNN 使用 CuPy 进行高效的矩阵运算。
- fastText:HFT-CNN 使用 fastText 生成的词嵌入来表示文本数据,fastText 是一个高效的文本分类和词向量训练工具。
集成与扩展
HFT-CNN 可以与其他自然语言处理(NLP)工具和框架集成,例如:
- NLTK:用于文本预处理和数据清洗。
- TensorFlow:用于构建更复杂的深度学习模型。
- Gensim:用于生成和加载词向量。
通过这些集成,可以进一步提升 HFT-CNN 在实际应用中的性能和灵活性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
5分钟掌握ImageSharp色彩矩阵变换:图像色调调整的终极指南3分钟解决Cursor试用限制:go-cursor-help工具全攻略Transmission数据库迁移工具:转移种子状态到新设备如何在VMware上安装macOS?解锁神器Unlocker完整使用指南如何为so-vits-svc项目贡献代码:从提交Issue到创建PR的完整指南Label Studio数据处理管道设计:ETL流程与标注前预处理终极指南突破拖拽限制:React Draggable社区扩展与实战指南如何快速安装 JSON Formatter:让 JSON 数据阅读更轻松的终极指南Element UI表格数据地图:Table地理数据可视化如何快速去除视频水印?免费开源神器「Video Watermark Remover」一键搞定!
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
337
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246