HFT-CNN:多标签短文本分类的利器
2024-09-15 04:47:09作者:伍霜盼Ellen
项目介绍
HFT-CNN 是一个基于 Chainer 框架的文本分类项目,专注于通过卷积神经网络(CNN)实现多标签短文本分类。项目提供了四种不同的模型实现,分别是 Flat 模型、Without Fine-tuning(WoFt)模型、Hierarchical Fine-Tuning(HFT)模型以及 XML-CNN 模型。这些模型不仅支持传统的扁平分类,还引入了层次结构和微调机制,以提升多标签分类的准确性和效率。
项目技术分析
HFT-CNN 项目的技术核心在于其对层次结构和微调机制的整合。通过引入层次结构,模型能够更好地捕捉文本的语义层次,从而提高分类的准确性。微调机制则允许模型在训练过程中动态调整参数,以适应不同的分类任务。此外,项目还支持动态最大池化(dynamic max pooling)和紧凑表示(compact representation),进一步提升了模型的性能。
项目及技术应用场景
HFT-CNN 适用于多种多标签短文本分类场景,如:
- 电商评论分类:自动将用户评论分类到不同的产品类别中,帮助商家快速了解用户反馈。
- 新闻分类:将新闻文章自动分类到不同的主题类别中,提高新闻检索和推荐的效率。
- 社交媒体分析:对社交媒体上的短文本进行分类,帮助企业了解用户情绪和市场趋势。
项目特点
- 层次结构支持:HFT-CNN 不仅支持传统的扁平分类,还引入了层次结构,能够更好地捕捉文本的语义层次。
- 微调机制:通过微调机制,模型能够在训练过程中动态调整参数,以适应不同的分类任务。
- 动态最大池化:支持动态最大池化,能够更灵活地处理不同长度的文本输入。
- 紧凑表示:提供紧凑表示,减少了模型的计算复杂度,同时保持了较高的分类准确性。
- 易于使用:项目提供了详细的安装和使用指南,用户可以通过简单的命令快速上手。
总结
HFT-CNN 是一个功能强大且易于使用的多标签短文本分类工具,适用于多种实际应用场景。无论你是数据科学家、开发者还是研究人员,HFT-CNN 都能为你提供高效、准确的文本分类解决方案。快来尝试吧!
参考文献
- [Liu+'17] J. Liu, W-C. Chang, Y. Wu, and Y. Yang. 2017. Deep Learning for Extreme Multi-Label Text Classification. In Proc. of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 115–124.
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882