MIMIC-III数据库中患者吸烟状态信息的提取方法
背景介绍
MIMIC-III(Massachusetts Institute of Technology Critical Care Database)是一个大型的、公开的重症监护数据库,包含了超过4万名患者的临床数据。在临床研究中,患者的吸烟状态是一个重要的基线特征,与多种疾病的发展和预后密切相关。然而,在MIMIC-III数据库中,吸烟状态信息并非以结构化数据形式存储,而是隐藏在临床文本记录中。
数据来源分析
在MIMIC-III数据库中,患者的吸烟状态信息主要存在于出院小结(discharge summaries)的"社会史"(social history)部分。这些文本记录存储在mimiciii_notes.noteevents表中,而不是结构化的临床数据表中。因此,我们需要通过文本挖掘技术从非结构化文本中提取相关信息。
文本提取技术方案
正则表达式匹配方法
从临床文本中提取吸烟状态信息,最有效的方法是使用正则表达式匹配。根据临床文档的书写习惯,我们可以设计匹配模式来识别以下几种吸烟状态描述:
- 从不吸烟:匹配"never"、"not"、"no"、"denies"等否定词与"smoke"、"tobacco"等关键词的组合
- 既往吸烟:匹配"former"、"previous"、"past"等表示过去时间的词与吸烟相关词的组合
- 当前吸烟:匹配"current"、"active"、"smokes"等表示当前状态的词
BigQuery实现示例
在Google BigQuery平台上,可以使用REGEXP_CONTAINS函数实现上述匹配逻辑。例如,识别"从不吸烟"患者的查询可以这样编写:
SELECT
subject_id,
hadm_id,
CASE
WHEN REGEXP_CONTAINS(text, r'(never|not|no|denies)[\s-]?(smoke|smoking|tobacco)')
THEN 'never'
WHEN REGEXP_CONTAINS(text, r'(former|previous|past)[\s-]?(smoke|smoking|tobacco)')
THEN 'former'
WHEN REGEXP_CONTAINS(text, r'(current|active|smokes)[\s-]?(smoke|smoking|tobacco)')
THEN 'current'
ELSE 'unknown'
END AS smoking_status
FROM
`physionet-data.mimiciii_notes.noteevents`
WHERE
category = 'Discharge summary'
技术要点与注意事项
-
文本预处理:临床文本中可能存在拼写错误(如"smoking"拼写为"smoking"),正则表达式应考虑这些变体。
-
否定词处理:需要全面考虑各种否定表达方式,包括"no history of"、"denies any"等临床常用短语。
-
性能优化:在大规模数据集上执行文本匹配可能较耗时,建议先筛选出出院小结(category = 'Discharge summary')再进行匹配。
-
结果验证:自动提取的结果应进行人工抽样验证,评估准确率和召回率。
应用价值
通过这种方法提取的吸烟状态信息可以用于:
- 临床研究中的混杂因素控制
- 疾病风险分层
- 预后分析
- 流行病学研究
这种方法不仅适用于吸烟状态提取,也可推广到其他类似的临床文本信息提取任务中,如饮酒史、药物过敏史等。
总结
在MIMIC-III这类临床数据库中,许多重要信息以非结构化文本形式存在。通过合理的文本挖掘技术,我们可以将这些信息转化为结构化数据,极大拓展数据库的研究价值。本文介绍的正则表达式匹配方法是一种简单有效的手段,特别适合处理临床文档中规律性较强的信息提取任务。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00