自动驾驶新纪元:基于模型预测控制的自主驾驶系统
2024-09-20 09:24:38作者:魏献源Searcher
项目介绍
在自动驾驶技术的浪潮中,模型预测控制(Model Predictive Control, MPC)作为一种先进的控制算法,正逐渐成为实现高精度、高稳定性自动驾驶的关键技术。本项目旨在利用MPC算法,在游戏模拟器中实现车辆的自主驾驶。通过与模拟器通过websocket通信,系统接收参考路径点(黄色线),并使用MPC计算出方向盘和油门指令,以实现车辆的平稳行驶。值得一提的是,该解决方案能够应对100毫秒的延迟,确保在实际应用中的鲁棒性。
项目技术分析
1. 运动学模型
本项目采用运动学模型来控制车辆在赛道上的行驶。运动学模型是对动力学模型的简化,忽略轮胎力、重力和质量等因素,虽然降低了模型的准确性,但大大简化了计算复杂度。
状态变量:
- x: 车辆x轴位置
- y: 车辆y轴位置
- ψ (psi): 车辆角度(相对于x轴的弧度)
- ν: 车辆速度
- cte: 横向误差
- eψ: 方向误差
控制变量:
- δ (delta): 方向盘角度
- a: 加速度(包括油门和刹车)
更新方程:

2. 时间步长与时间间隔(N & dt)
- N = 10
- dt = 0.12 s
预测时间T是N和dt的乘积,T应尽可能大,而dt应尽可能小。本项目通过测试不同dt值(0.3, 0.12, 0.1, 0.08),最终选择0.12秒,以确保MPC在处理延迟时的有效性。
3. 多项式拟合与MPC预处理
参考路径点在全局坐标系中给出,通过map2car函数将其转换为车辆坐标系,并使用三阶多项式拟合路径点。
4. 模型预测控制与延迟处理
在实际应用中,控制指令的执行存在延迟。本项目通过运动学方程预测100毫秒后的状态,并将其传递给MPC,以应对延迟问题。
项目及技术应用场景
本项目不仅适用于游戏模拟器中的自动驾驶,还可应用于实际的自动驾驶车辆中。MPC算法的高精度和鲁棒性使其在复杂路况下表现出色,尤其适用于城市道路、高速公路等场景。此外,MPC还可用于无人机、机器人等领域的路径规划和控制。
项目特点
- 高精度控制:MPC算法能够精确计算出车辆的控制指令,确保车辆在复杂路况下的稳定行驶。
- 鲁棒性:系统能够应对100毫秒的延迟,确保在实际应用中的可靠性。
- 高效性:通过优化时间步长和时间间隔,系统在保证精度的同时,提高了计算效率。
- 易扩展性:项目代码结构清晰,易于扩展和修改,适合进一步研究和开发。
结语
本项目展示了模型预测控制在自动驾驶领域的强大潜力。通过精确的控制和鲁棒的延迟处理,MPC为实现安全、高效的自动驾驶提供了坚实的技术基础。无论你是自动驾驶技术的研究者,还是对MPC算法感兴趣的开发者,本项目都值得你深入探索和应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
458
3.42 K
暂无简介
Dart
710
170
Ascend Extension for PyTorch
Python
265
299
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
182
67
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
431
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118