IBM Granite TimeSeries Forecasting Models (TSFM) 使用指南
2024-09-22 08:40:14作者:秋阔奎Evelyn
1. 项目介绍
IBM Granite TimeSeries Forecasting Models(TSFM)是一个开源项目,旨在提供一系列时间序列预测模型,这些模型基于多种公开数据集进行预训练,并支持用户自定义数据集进行微调。TSFM 项目包含了多种时间序列模型,如 TinyTimeMixer(TTM),这些模型体积小巧,速度快,非常适合资源受限的预测场景。
2. 项目快速启动
首先,你需要克隆项目仓库并安装必要的依赖项。以下是在本地环境中快速启动的步骤:
# 克隆项目仓库
git clone "https://github.com/ibm-granite/granite-tsfm.git"
cd granite-tsfm
# 安装依赖项
pip install -r requirements.txt
接下来,你可以运行一个简单的示例脚本,以验证安装是否成功:
# 运行示例脚本
python examples/simple_example.py
3. 应用案例和最佳实践
以下是几个应用案例和最佳实践,帮助你更好地使用 TSFM:
3.1 TinyTimeMixer (TTM) 快速微调
如果你有一组自定义的时间序列数据,并希望对 TTM 模型进行微调,以下是一个简单的微调流程:
from transformers import TinyTimeMixerForPrediction
from transformers import Trainer
# 加载预训练的 TTM 模型
model = TinyTimeMixerForPrediction.from_pretrained("https://huggingface.co/ibm/TTM", revision="main")
# 准备你的数据集
# ...
# 创建微调的 Trainer 对象
trainer = Trainer(
model=model,
args=finetune_forecast_args,
train_dataset=dset_train,
eval_dataset=dset_val,
callbacks=[early_stopping_callback, tracking_callback]
)
# 开始微调
trainer.train()
# 评估微调后的模型
fewshot_output = trainer.evaluate(dset_test)
3.2 零样本预测
TTM 模型支持零样本预测,这意味着你可以在没有任何训练的情况下直接使用模型进行预测:
from transformers import TinyTimeMixerForPrediction
from transformers import Trainer
# 加载预训练的 TTM 模型
model = TinyTimeMixerForPrediction.from_pretrained("https://huggingface.co/ibm/TTM", revision="main")
# 创建零样本预测的 Trainer 对象
trainer = Trainer(model=model, args=zeroshot_forecast_args)
# 进行零样本预测
zeroshot_output = trainer.evaluate(dset_test)
4. 典型生态项目
TSFM 项目与 Hugging Face 生态系统紧密集成,你可以轻松地使用 Hugging Face 提供的模型和工具。以下是一些典型的生态项目:
- Hugging Face Models: TSFM 项目中的模型都可以在 Hugging Face Models 仓库中找到,你可以直接从仓库中加载和部署模型。
- Hugging Face Datasets: TSFM 使用的公开数据集可以在 Hugging Face Datasets 仓库中找到,这些数据集可以用于模型的训练和评估。
- Hugging Face Spaces: 你可以在 Hugging Face Spaces 上创建项目,展示你的时间序列预测应用,并与社区分享你的工作。
通过上述介绍,你应该能够开始使用 IBM Granite TimeSeries Forecasting Models (TSFM) 进行时间序列预测了。如果你有任何问题或需要进一步的帮助,请查看项目文档或在 GitHub 上提出问题。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5