IBM Granite TimeSeries Forecasting Models (TSFM) 使用指南
2024-09-22 19:26:19作者:秋阔奎Evelyn
1. 项目介绍
IBM Granite TimeSeries Forecasting Models(TSFM)是一个开源项目,旨在提供一系列时间序列预测模型,这些模型基于多种公开数据集进行预训练,并支持用户自定义数据集进行微调。TSFM 项目包含了多种时间序列模型,如 TinyTimeMixer(TTM),这些模型体积小巧,速度快,非常适合资源受限的预测场景。
2. 项目快速启动
首先,你需要克隆项目仓库并安装必要的依赖项。以下是在本地环境中快速启动的步骤:
# 克隆项目仓库
git clone "https://github.com/ibm-granite/granite-tsfm.git"
cd granite-tsfm
# 安装依赖项
pip install -r requirements.txt
接下来,你可以运行一个简单的示例脚本,以验证安装是否成功:
# 运行示例脚本
python examples/simple_example.py
3. 应用案例和最佳实践
以下是几个应用案例和最佳实践,帮助你更好地使用 TSFM:
3.1 TinyTimeMixer (TTM) 快速微调
如果你有一组自定义的时间序列数据,并希望对 TTM 模型进行微调,以下是一个简单的微调流程:
from transformers import TinyTimeMixerForPrediction
from transformers import Trainer
# 加载预训练的 TTM 模型
model = TinyTimeMixerForPrediction.from_pretrained("https://huggingface.co/ibm/TTM", revision="main")
# 准备你的数据集
# ...
# 创建微调的 Trainer 对象
trainer = Trainer(
model=model,
args=finetune_forecast_args,
train_dataset=dset_train,
eval_dataset=dset_val,
callbacks=[early_stopping_callback, tracking_callback]
)
# 开始微调
trainer.train()
# 评估微调后的模型
fewshot_output = trainer.evaluate(dset_test)
3.2 零样本预测
TTM 模型支持零样本预测,这意味着你可以在没有任何训练的情况下直接使用模型进行预测:
from transformers import TinyTimeMixerForPrediction
from transformers import Trainer
# 加载预训练的 TTM 模型
model = TinyTimeMixerForPrediction.from_pretrained("https://huggingface.co/ibm/TTM", revision="main")
# 创建零样本预测的 Trainer 对象
trainer = Trainer(model=model, args=zeroshot_forecast_args)
# 进行零样本预测
zeroshot_output = trainer.evaluate(dset_test)
4. 典型生态项目
TSFM 项目与 Hugging Face 生态系统紧密集成,你可以轻松地使用 Hugging Face 提供的模型和工具。以下是一些典型的生态项目:
- Hugging Face Models: TSFM 项目中的模型都可以在 Hugging Face Models 仓库中找到,你可以直接从仓库中加载和部署模型。
- Hugging Face Datasets: TSFM 使用的公开数据集可以在 Hugging Face Datasets 仓库中找到,这些数据集可以用于模型的训练和评估。
- Hugging Face Spaces: 你可以在 Hugging Face Spaces 上创建项目,展示你的时间序列预测应用,并与社区分享你的工作。
通过上述介绍,你应该能够开始使用 IBM Granite TimeSeries Forecasting Models (TSFM) 进行时间序列预测了。如果你有任何问题或需要进一步的帮助,请查看项目文档或在 GitHub 上提出问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134