Spring Cloud Sleuth 使用教程
项目介绍
Spring Cloud Sleuth 是一个用于分布式系统中实现跟踪的工具。它为 Spring Cloud 提供了分布式跟踪的解决方案,可以轻松地与各种日志分析系统(如 Zipkin)集成。Spring Cloud Sleuth 通过在日志中添加跟踪信息,帮助开发者理解和分析微服务之间的调用链路。
项目快速启动
添加依赖
首先,在你的 Spring Boot 项目中添加 Spring Cloud Sleuth 的依赖。可以在 pom.xml 文件中添加如下内容:
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
配置应用
在 application.properties 或 application.yml 文件中配置应用名称:
spring.application.name=my-service
启动应用
启动你的 Spring Boot 应用,Spring Cloud Sleuth 会自动为你的日志添加跟踪信息。例如,控制台输出的日志可能包含如下内容:
[my-service,7891234567890123,1234567890123456,false]
其中,各部分的含义如下:
my-service:应用名称7891234567890123:Trace ID1234567890123456:Span IDfalse:是否将该信息输出到 Zipkin 等服务中
应用案例和最佳实践
案例一:微服务调用链路跟踪
假设你有两个微服务 service-a 和 service-b,service-a 调用 service-b。通过 Spring Cloud Sleuth,你可以轻松跟踪这两个服务之间的调用链路。
代码示例
在 service-a 中调用 service-b:
@RestController
public class ServiceAController {
@Autowired
private RestTemplate restTemplate;
@GetMapping("/call-service-b")
public String callServiceB() {
return restTemplate.getForObject("http://localhost:8081/service-b", String.class);
}
}
在 service-b 中:
@RestController
public class ServiceBController {
@GetMapping("/service-b")
public String serviceB() {
return "Hello from Service B";
}
}
最佳实践
- 集成 Zipkin:将 Spring Cloud Sleuth 与 Zipkin 集成,可以更直观地查看和分析调用链路。
- 配置抽样策略:根据需求配置抽样策略,避免过多的跟踪信息影响性能。
典型生态项目
Zipkin
Zipkin 是一个开源的分布式跟踪系统,可以与 Spring Cloud Sleuth 无缝集成。通过 Zipkin,你可以收集和分析 Spring Cloud Sleuth 生成的跟踪信息,从而更好地理解微服务之间的调用关系。
ELK 平台
ELK 平台(Elasticsearch, Logstash, Kibana)是另一个常用的日志分析系统。通过将 Spring Cloud Sleuth 生成的日志发送到 ELK 平台,可以集中收集、存储和搜索跟踪信息,提高问题排查的效率。
通过以上内容,你可以快速了解和使用 Spring Cloud Sleuth,并结合实际案例和最佳实践,更好地在分布式系统中实现跟踪和监控。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00