GLM-4模型微调后推理异常问题分析与解决方案
2025-06-03 07:39:47作者:胡唯隽
问题背景
在使用GLM-4-9B-Chat模型进行微调后,开发者遇到了一个典型的问题:当通过vLLM进行推理时,模型会持续输出内容直到达到最大token限制,而不会像预期那样在适当位置停止。这种现象在模型微调领域并不罕见,但需要深入理解其背后的原因才能有效解决。
问题现象详细描述
开发者报告的具体现象包括:
- 使用swift工具微调后的GLM-4-9B-Chat模型,在vLLM推理环境下会持续输出
- 相同的模型使用swift infer命令推理时表现正常
- 原始未微调模型在vLLM环境下工作正常
- 尝试了不同版本vLLM(0.4.2, 0.4.3, 0.5.0.post1)问题依旧
- 在不同硬件环境(4090D和L20)下重现了相同问题
根本原因分析
经过技术专家诊断,问题的核心在于generation_config配置文件的差异。具体表现为:
- 微调并merge后的模型目录中,generation_config.json文件内容与原始模型不一致
- vLLM等推理框架严重依赖generation_config中的参数来控制生成行为
- 缺失或错误的配置会导致模型无法正确识别停止条件
解决方案
要解决这个问题,可以采取以下步骤:
-
检查并修复generation_config文件:
- 确保微调后的模型目录中包含完整的generation_config.json
- 对比原始模型的generation_config,确保关键参数一致
-
微调过程中的注意事项:
- 在使用swift sft命令时,确保保留原始模型的所有配置文件
- 在merge模型权重时,不要覆盖或删除原有配置
-
验证步骤:
- 微调完成后,检查output_dir中是否包含完整的配置文件
- 使用diff工具对比原始模型和微调后模型的generation_config.json
技术原理深入
理解这个问题需要了解几个关键概念:
-
generation_config的作用:
- 控制文本生成的参数,如temperature、top_p等
- 定义停止条件,如eos_token_id等
- 影响解码策略和生成长度
-
vLLM的工作原理:
- 高度依赖模型配置文件来确定推理行为
- 使用eos_token_id等标记来确定生成结束点
- 当配置缺失时,可能无法正确停止生成
-
模型微调的影响:
- 微调过程可能改变模型的原始配置
- 某些工具在merge权重时可能不保留全部配置文件
- 需要特别注意配置文件的完整性
最佳实践建议
为避免类似问题,建议开发者在微调GLM-4模型时:
-
始终备份原始模型的全部配置文件
-
在merge操作后,手动验证配置文件的完整性
-
建立模型验证流程,包括:
- 配置文件检查
- 推理行为测试
- 生成质量评估
-
考虑使用模型版本控制工具管理不同阶段的模型文件
总结
GLM-4模型微调后推理异常问题揭示了深度学习工作流中一个常见但容易被忽视的环节——配置文件管理。通过深入理解generation_config的作用和vLLM等推理框架的工作原理,开发者可以更好地掌控模型微调全过程,确保训练和推理的一致性。记住,一个成功的模型不仅需要优秀的权重参数,也需要正确的配置环境。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76