GLM-4模型微调后推理异常问题分析与解决方案
2025-06-03 06:04:01作者:胡唯隽
问题背景
在使用GLM-4-9B-Chat模型进行微调后,开发者遇到了一个典型的问题:当通过vLLM进行推理时,模型会持续输出内容直到达到最大token限制,而不会像预期那样在适当位置停止。这种现象在模型微调领域并不罕见,但需要深入理解其背后的原因才能有效解决。
问题现象详细描述
开发者报告的具体现象包括:
- 使用swift工具微调后的GLM-4-9B-Chat模型,在vLLM推理环境下会持续输出
- 相同的模型使用swift infer命令推理时表现正常
- 原始未微调模型在vLLM环境下工作正常
- 尝试了不同版本vLLM(0.4.2, 0.4.3, 0.5.0.post1)问题依旧
- 在不同硬件环境(4090D和L20)下重现了相同问题
根本原因分析
经过技术专家诊断,问题的核心在于generation_config配置文件的差异。具体表现为:
- 微调并merge后的模型目录中,generation_config.json文件内容与原始模型不一致
- vLLM等推理框架严重依赖generation_config中的参数来控制生成行为
- 缺失或错误的配置会导致模型无法正确识别停止条件
解决方案
要解决这个问题,可以采取以下步骤:
-
检查并修复generation_config文件:
- 确保微调后的模型目录中包含完整的generation_config.json
- 对比原始模型的generation_config,确保关键参数一致
-
微调过程中的注意事项:
- 在使用swift sft命令时,确保保留原始模型的所有配置文件
- 在merge模型权重时,不要覆盖或删除原有配置
-
验证步骤:
- 微调完成后,检查output_dir中是否包含完整的配置文件
- 使用diff工具对比原始模型和微调后模型的generation_config.json
技术原理深入
理解这个问题需要了解几个关键概念:
-
generation_config的作用:
- 控制文本生成的参数,如temperature、top_p等
- 定义停止条件,如eos_token_id等
- 影响解码策略和生成长度
-
vLLM的工作原理:
- 高度依赖模型配置文件来确定推理行为
- 使用eos_token_id等标记来确定生成结束点
- 当配置缺失时,可能无法正确停止生成
-
模型微调的影响:
- 微调过程可能改变模型的原始配置
- 某些工具在merge权重时可能不保留全部配置文件
- 需要特别注意配置文件的完整性
最佳实践建议
为避免类似问题,建议开发者在微调GLM-4模型时:
-
始终备份原始模型的全部配置文件
-
在merge操作后,手动验证配置文件的完整性
-
建立模型验证流程,包括:
- 配置文件检查
- 推理行为测试
- 生成质量评估
-
考虑使用模型版本控制工具管理不同阶段的模型文件
总结
GLM-4模型微调后推理异常问题揭示了深度学习工作流中一个常见但容易被忽视的环节——配置文件管理。通过深入理解generation_config的作用和vLLM等推理框架的工作原理,开发者可以更好地掌控模型微调全过程,确保训练和推理的一致性。记住,一个成功的模型不仅需要优秀的权重参数,也需要正确的配置环境。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759