Shaka Player中PlayReady离线播放问题的分析与解决
背景介绍
Shaka Player作为一款流行的开源HTML5视频播放器,支持多种DRM方案,包括Widevine、PlayReady和FairPlay。在实际应用中,开发者经常需要实现视频内容的离线播放功能。然而,在使用PlayReady DRM方案时,部分开发者遇到了无法下载内容进行离线播放的问题。
问题现象
开发者在使用Shaka Player 4.11.17版本时发现:
- 非DRM加密内容可以正常下载并离线播放
- Widevine加密内容也能成功下载并离线播放
- 但PlayReady加密内容在尝试下载时抛出错误:"Failed to execute 'generateRequest' on 'MediaKeySession': Failed to create MF PR CdmSession (2154823689)"
技术分析
这个错误表明在创建PlayReady的媒体密钥会话时出现了问题。经过深入调查,发现主要原因包括:
-
密钥系统标识符问题:在Windows Edge浏览器上,需要使用"com.microsoft.playready.recommendation"而非"com.microsoft.playready"作为密钥系统标识符。
-
持久性许可证支持:离线播放需要许可证服务器支持持久性许可证(persistent license),而部分许可证服务器可能未正确配置此功能。
-
CDM会话创建失败:错误代码2154823689表明底层媒体基础PlayReady内容解密模块(CDM)在创建会话时遇到了不支持的操作。
解决方案
针对上述问题,可以采取以下措施:
- 更新密钥系统配置:
// 正确的配置方式
const config = {
drm: {
servers: {
'com.microsoft.playready.recommendation': 'YOUR_LICENSE_SERVER_URL'
}
}
};
player.configure(config);
-
验证许可证服务器支持: 确保使用的PlayReady许可证服务器支持持久性许可证。可以联系DRM提供商确认此功能是否可用。
-
使用最新版本: Shaka Player团队已在后续版本中修复了相关问题,建议升级到最新版本。
-
浏览器兼容性检查: 确认使用的Edge浏览器版本支持PlayReady离线功能。某些旧版本可能存在兼容性问题。
实现示例
以下是实现PlayReady内容离线播放的完整配置示例:
async function initPlayer() {
const video = document.getElementById('video');
const player = new shaka.Player(video);
try {
await player.load('YOUR_MANIFEST_URL');
// 配置离线存储和DRM
player.configure({
drm: {
servers: {
'com.microsoft.playready.recommendation': 'YOUR_LICENSE_SERVER_URL'
},
advanced: {
'com.microsoft.playready.recommendation': {
persistentState: 'required',
sessionTypes: ['persistent-license']
}
}
}
});
// 存储内容供离线使用
const storage = new shaka.offline.Storage(player);
await storage.store();
console.log('内容已成功存储供离线使用');
} catch (error) {
console.error('Error:', error);
}
}
注意事项
-
不同浏览器对PlayReady的支持程度不同,建议在Windows平台使用Edge浏览器以获得最佳兼容性。
-
离线存储的内容仅在原始设备上可播放,这是DRM系统的安全限制。
-
存储空间有限制,具体取决于浏览器和设备的实现。
-
某些内容提供商可能对离线播放有额外的限制条件。
总结
通过正确配置密钥系统标识符和确保许可证服务器支持持久性许可证,可以解决Shaka Player中PlayReady内容无法离线播放的问题。开发者应当注意不同浏览器和版本的兼容性差异,并及时更新到Shaka Player的最新版本以获得最佳支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









