Marigold项目深度解析:基于扩散模型的深度图生成技术
2025-06-29 07:53:02作者:冯爽妲Honey
引言
Marigold项目提出了一种创新的深度估计方法,通过将扩散模型与潜在空间表示相结合,实现了从单张RGB图像生成高质量深度图的能力。本文将深入解析该项目的核心思想和技术实现细节,帮助读者理解这一前沿技术的工作原理。
技术架构概述
Marigold项目的核心架构建立在稳定扩散(Stable Diffusion)模型的基础上,通过精心设计的训练流程实现了RGB图像到深度图的转换。系统主要由以下几个关键组件构成:
- 潜在编码器(Latent Encoder):负责将输入图像和深度图编码到潜在空间
- 扩散模型(Diffusion Model):在潜在空间中进行噪声预测和去除
- 潜在解码器(Latent Decoder):将处理后的潜在表示转换回深度图
训练流程详解
训练阶段采用监督学习的方式,流程如下:
- 数据准备:输入RGB图像及其对应的真实深度图
- 潜在编码:使用VAE编码器将深度图转换为潜在表示
- 噪声添加:在深度图潜在表示上添加随机噪声
- 特征融合:将干净的图像潜在特征与噪声深度图潜在特征拼接
- 噪声预测:扩散模型(U-Net)预测添加的噪声
- 损失计算:计算预测噪声与真实噪声之间的L2损失
值得注意的是,在训练过程中,图像潜在表示始终保持"干净"状态,只有深度图潜在表示会被添加噪声。这种设计使得模型能够学习从噪声中恢复出与输入图像匹配的深度信息。
推理流程解析
推理阶段的工作流程与训练阶段有所不同:
- 图像编码:输入RGB图像通过潜在编码器转换为潜在表示
- 噪声初始化:深度图潜在表示初始化为随机高斯噪声
- 迭代去噪:扩散模型逐步去除深度图潜在表示中的噪声
- 深度解码:最终将去噪后的潜在表示通过解码器转换为深度图
关键点在于,推理过程是一个从纯噪声开始的逐步精炼过程,通过多次迭代最终生成与输入图像匹配的深度图。
关键技术细节
-
潜在空间处理:项目采用了将单通道深度图复制为三通道的处理方式,使其能够兼容现有的VAE编码器/解码器架构。
-
条件生成机制:扩散模型通过学习图像潜在表示(条件)与深度图潜在表示之间的关联关系,实现了条件生成能力。
-
模型微调策略:在预训练的稳定扩散模型基础上,项目通过特定数据的微调,使其适应深度图生成任务。
技术优势与应用潜力
Marigold项目的技术方案具有以下显著优势:
- 高质量生成:扩散模型能够生成细节丰富、边缘清晰的深度图
- 强泛化性:潜在空间表示使模型能够处理多样化的输入场景
- 灵活扩展:框架可扩展至其他图像到图像转换任务
这种基于扩散模型的深度估计方法为计算机视觉领域开辟了新的可能性,特别是在三维重建、增强现实等应用中具有重要价值。
总结
Marigold项目通过巧妙地将扩散模型应用于深度估计任务,展示了生成式模型在传统视觉问题中的强大潜力。其核心创新在于将深度图生成问题转化为潜在空间中的条件去噪过程,既利用了扩散模型的高质量生成能力,又保持了计算效率。这一技术路线为后续研究提供了有价值的参考方向。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493