Pointcept项目中Matterport3D数据集标签缺失问题分析
2025-07-04 00:40:30作者:龚格成
问题背景
在Pointcept项目中使用Matterport3D数据集进行点云语义分割训练时,研究人员发现了一个关键问题:部分样本的标签数据全部为-1(即忽略索引),导致模型训练过程中出现异常中断。这一问题不仅影响了训练流程的正常进行,还揭示了数据集本身存在的一些质量问题。
问题表现
当使用PTv3模型在Matterport3D预处理数据上进行训练时,系统在验证阶段第152个样本处崩溃。错误信息显示模型无法处理形状不匹配的输出,具体表现为损失函数计算时出现了维度不匹配的问题。
深入分析发现,问题样本"X7HyMhZNoso_10"的所有标签值均为-1,这意味着该样本没有任何有效的语义标注。类似的情况也出现在测试样本"UwV83HsGsw3_14"中。
技术分析
1. 标签数据异常
通过检查问题样本的标签数据发现:
x = np.load("X7HyMhZNoso_10/segment.npy")
x.shape # (35980,)
x # array([-1, -1, -1, ..., -1, -1, -1], dtype=int16)
sum(x==-1) # 35980
这表明整个样本的35980个点全部被标记为忽略索引,没有提供任何有效的语义信息。这种异常情况会导致模型在计算损失函数时无法找到有效的监督信号。
2. 类别分布不均衡
进一步分析还发现,验证集中完全缺少类别15(浴帘)的样本,导致模型在该类别上的IoU和准确率始终为0%。这反映了数据集在类别分布上的不均衡问题。
解决方案
临时解决方案
研究人员采取了以下临时措施:
- 从验证集中移除问题样本"X7HyMhZNoso_10"
- 修改预处理流程以处理类似情况
这些措施使得训练流程能够继续进行,但并非根本解决方案。
长期建议
针对Matterport3D数据集的质量问题,建议采取以下措施:
- 数据清洗:在预处理阶段增加对无效样本的检测和过滤机制
- 样本均衡:分析各类别分布情况,必要时进行过采样或欠采样
- 损失函数增强:修改损失函数使其能够优雅处理全忽略样本的情况
- 数据验证:在训练前对数据集进行完整性检查
经验总结
这一案例揭示了在使用第三方数据集时可能遇到的质量问题。特别是对于复杂的3D点云数据集,以下几点值得注意:
- 数据集预处理阶段需要包含严格的质量控制步骤
- 模型实现应考虑各种边界情况的处理
- 训练前进行数据统计分析有助于提前发现问题
- 对于关键应用场景,可能需要人工检查部分样本以确保数据质量
Pointcept项目团队表示将公开Matterport3D的预处理代码,这将有助于社区更好地理解和使用该数据集,同时也便于发现和解决潜在的数据质量问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
238
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
144
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
218
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869