Pointcept项目训练过程中常见问题分析与解决方案
2025-07-04 22:32:12作者:卓炯娓
关于Pointcept项目
Pointcept是一个基于PyTorch的点云处理框架,专注于3D点云分割任务。该项目提供了多种先进的点云处理模型和训练流程,支持S3DIS等主流点云数据集。
训练过程中常见问题分析
1. OneCycleLR调度器报错问题
在训练过程中,用户遇到了"ValueError: Expected positive integer total_steps, but got 0"的错误提示。这个错误通常发生在使用OneCycleLR学习率调度器时,表明系统无法正确计算训练的总步数。
问题原因分析:
- 数据路径配置错误,导致无法加载有效数据
- 数据预处理环节出现问题
- 数据集划分不正确
解决方案:
- 检查数据路径配置,确保指向正确的预处理数据
- 验证数据集是否完整且格式正确
- 确认数据划分配置与实际情况一致
2. 训练过程中出现NaN损失值
在训练过程中,用户遇到了损失值变为NaN的情况,并伴随CUDA设备端断言错误。
问题原因分析:
- 批次大小设置过小导致梯度不稳定
- 学习率设置过高
- 混合精度训练(AMP)带来的数值不稳定
解决方案:
- 适当增大批次大小,建议至少为6
- 降低初始学习率
- 可以尝试禁用混合精度训练(设置enable_amp=False)
- 检查模型参数初始化是否合理
训练配置优化建议
硬件配置适配
对于配备2块NVIDIA RTX 3090显卡(每卡24GB显存)的环境,建议配置如下:
- 批次大小:6-8(可根据显存情况调整)
- 工作线程数:4-8(根据CPU核心数调整)
- 网格采样大小:0.02-0.04(平衡精度和性能)
关键参数设置
- 学习率调度器配置:
scheduler = dict(
type='OneCycleLR',
max_lr=[0.006, 0.0006],
pct_start=0.05,
anneal_strategy='cos',
div_factor=10.0,
final_div_factor=1000.0)
- 优化器配置:
optimizer = dict(type='AdamW', lr=0.006, weight_decay=0.05)
- 数据增强配置:
transform=[
dict(type='CenterShift', apply_z=True),
dict(type='RandomDropout', dropout_ratio=0.2),
dict(type='RandomRotate', angle=[-1,1], axis='z'),
dict(type='RandomScale', scale=[0.9, 1.1]),
dict(type='GridSample', grid_size=0.02, mode='train')
]
训练稳定性提升技巧
- 梯度裁剪:可以添加梯度裁剪来防止梯度爆炸
- 学习率预热:适当延长学习率预热阶段
- 损失函数组合:结合交叉熵损失和Lovasz损失可以提高训练稳定性
- 正则化策略:适当增加权重衰减和Dropout比例
通过以上配置和优化,可以有效解决Pointcept项目训练过程中的常见问题,提高模型训练的稳定性和最终性能。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44