Pointcept项目训练过程中常见问题分析与解决方案
2025-07-04 11:51:32作者:卓炯娓
关于Pointcept项目
Pointcept是一个基于PyTorch的点云处理框架,专注于3D点云分割任务。该项目提供了多种先进的点云处理模型和训练流程,支持S3DIS等主流点云数据集。
训练过程中常见问题分析
1. OneCycleLR调度器报错问题
在训练过程中,用户遇到了"ValueError: Expected positive integer total_steps, but got 0"的错误提示。这个错误通常发生在使用OneCycleLR学习率调度器时,表明系统无法正确计算训练的总步数。
问题原因分析:
- 数据路径配置错误,导致无法加载有效数据
- 数据预处理环节出现问题
- 数据集划分不正确
解决方案:
- 检查数据路径配置,确保指向正确的预处理数据
- 验证数据集是否完整且格式正确
- 确认数据划分配置与实际情况一致
2. 训练过程中出现NaN损失值
在训练过程中,用户遇到了损失值变为NaN的情况,并伴随CUDA设备端断言错误。
问题原因分析:
- 批次大小设置过小导致梯度不稳定
- 学习率设置过高
- 混合精度训练(AMP)带来的数值不稳定
解决方案:
- 适当增大批次大小,建议至少为6
- 降低初始学习率
- 可以尝试禁用混合精度训练(设置enable_amp=False)
- 检查模型参数初始化是否合理
训练配置优化建议
硬件配置适配
对于配备2块NVIDIA RTX 3090显卡(每卡24GB显存)的环境,建议配置如下:
- 批次大小:6-8(可根据显存情况调整)
- 工作线程数:4-8(根据CPU核心数调整)
- 网格采样大小:0.02-0.04(平衡精度和性能)
关键参数设置
- 学习率调度器配置:
scheduler = dict(
type='OneCycleLR',
max_lr=[0.006, 0.0006],
pct_start=0.05,
anneal_strategy='cos',
div_factor=10.0,
final_div_factor=1000.0)
- 优化器配置:
optimizer = dict(type='AdamW', lr=0.006, weight_decay=0.05)
- 数据增强配置:
transform=[
dict(type='CenterShift', apply_z=True),
dict(type='RandomDropout', dropout_ratio=0.2),
dict(type='RandomRotate', angle=[-1,1], axis='z'),
dict(type='RandomScale', scale=[0.9, 1.1]),
dict(type='GridSample', grid_size=0.02, mode='train')
]
训练稳定性提升技巧
- 梯度裁剪:可以添加梯度裁剪来防止梯度爆炸
- 学习率预热:适当延长学习率预热阶段
- 损失函数组合:结合交叉熵损失和Lovasz损失可以提高训练稳定性
- 正则化策略:适当增加权重衰减和Dropout比例
通过以上配置和优化,可以有效解决Pointcept项目训练过程中的常见问题,提高模型训练的稳定性和最终性能。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
417
仓颉编程语言运行时与标准库。
Cangjie
130
430