YOLOv5视频检测中如何过滤特定类别并保存结果
2025-05-01 02:40:34作者:廉彬冶Miranda
在计算机视觉项目中,使用YOLOv5进行目标检测时,经常需要针对特定类别的物体进行检测并保存结果。本文将详细介绍如何在YOLOv5中实现只检测并保存指定类别的视频输出。
问题背景
当使用YOLOv5的detect.py脚本进行视频检测时,虽然可以通过--class参数指定要检测的类别,但有时输出视频中仍然会显示所有类别的检测结果。这是因为默认的视频保存逻辑没有完全按照类别过滤条件来处理。
解决方案
要实现真正的类别过滤输出,需要对检测脚本进行适当修改。以下是关键步骤:
-
确保环境配置正确:
- 使用最新版本的YOLOv5
- 确保PyTorch版本兼容
-
修改检测脚本: 在detect.py中,需要在两个关键位置添加类别过滤逻辑:
- 在非极大值抑制(NMS)处理后
- 在绘制边界框前
-
核心代码修改: 在预测循环中添加类别过滤条件:
if len(det):
# 应用NMS
det[:, :4] = scale_boxes(im0.shape[2:], det[:, :4], im0.shape).round()
# 确保检测结果有预期的维度
if det.shape[1] > 5:
# 只保留指定类别的检测结果
det = det[det[:, 5].isin(opt.classes)]
else:
continue
实现细节
-
检测结果处理:
- 检测结果det是一个张量,其中第5列(索引为5)包含类别信息
- 使用isin()方法可以高效地过滤出指定类别的检测结果
-
边界框绘制:
- 在绘制边界框前,确保只处理过滤后的检测结果
- 使用plot_one_box函数时,颜色和标签会自动对应到正确的类别
-
错误处理:
- 添加维度检查,防止因检测结果格式不符导致的错误
- 当检测结果不符合预期时,跳过当前帧的处理
使用建议
-
命令行参数: 使用时通过--class参数指定要检测的类别索引,例如:
python detect.py --weights yolov5x.pt --source input.mp4 --class 0 2 5 7 -
性能考虑:
- 类别过滤操作会增加少量计算开销
- 对于大视频文件,建议先在少量帧上测试效果
-
结果验证:
- 检查输出视频中是否只包含指定类别的检测框
- 确认标签和颜色是否正确对应到过滤后的类别
总结
通过上述方法,可以有效地在YOLOv5中实现针对特定类别的视频检测和结果保存。这种技术在实际应用中非常有用,例如在监控场景中只关注人员或车辆等特定目标的检测。关键是要确保在检测结果处理的各个环节都正确应用了类别过滤条件。
对于更复杂的需求,如不同类别使用不同的处理逻辑,可以进一步扩展这个基础方案,在类别过滤后添加自定义的处理流程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178