YOLOv5视频检测中如何过滤特定类别并保存结果
2025-05-01 02:40:34作者:廉彬冶Miranda
在计算机视觉项目中,使用YOLOv5进行目标检测时,经常需要针对特定类别的物体进行检测并保存结果。本文将详细介绍如何在YOLOv5中实现只检测并保存指定类别的视频输出。
问题背景
当使用YOLOv5的detect.py脚本进行视频检测时,虽然可以通过--class参数指定要检测的类别,但有时输出视频中仍然会显示所有类别的检测结果。这是因为默认的视频保存逻辑没有完全按照类别过滤条件来处理。
解决方案
要实现真正的类别过滤输出,需要对检测脚本进行适当修改。以下是关键步骤:
-
确保环境配置正确:
- 使用最新版本的YOLOv5
- 确保PyTorch版本兼容
-
修改检测脚本: 在detect.py中,需要在两个关键位置添加类别过滤逻辑:
- 在非极大值抑制(NMS)处理后
- 在绘制边界框前
-
核心代码修改: 在预测循环中添加类别过滤条件:
if len(det):
# 应用NMS
det[:, :4] = scale_boxes(im0.shape[2:], det[:, :4], im0.shape).round()
# 确保检测结果有预期的维度
if det.shape[1] > 5:
# 只保留指定类别的检测结果
det = det[det[:, 5].isin(opt.classes)]
else:
continue
实现细节
-
检测结果处理:
- 检测结果det是一个张量,其中第5列(索引为5)包含类别信息
- 使用isin()方法可以高效地过滤出指定类别的检测结果
-
边界框绘制:
- 在绘制边界框前,确保只处理过滤后的检测结果
- 使用plot_one_box函数时,颜色和标签会自动对应到正确的类别
-
错误处理:
- 添加维度检查,防止因检测结果格式不符导致的错误
- 当检测结果不符合预期时,跳过当前帧的处理
使用建议
-
命令行参数: 使用时通过--class参数指定要检测的类别索引,例如:
python detect.py --weights yolov5x.pt --source input.mp4 --class 0 2 5 7 -
性能考虑:
- 类别过滤操作会增加少量计算开销
- 对于大视频文件,建议先在少量帧上测试效果
-
结果验证:
- 检查输出视频中是否只包含指定类别的检测框
- 确认标签和颜色是否正确对应到过滤后的类别
总结
通过上述方法,可以有效地在YOLOv5中实现针对特定类别的视频检测和结果保存。这种技术在实际应用中非常有用,例如在监控场景中只关注人员或车辆等特定目标的检测。关键是要确保在检测结果处理的各个环节都正确应用了类别过滤条件。
对于更复杂的需求,如不同类别使用不同的处理逻辑,可以进一步扩展这个基础方案,在类别过滤后添加自定义的处理流程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248