推荐文章:基于DeepSORT和YOLOv5的实时目标追踪系统
2024-05-22 04:55:47作者:庞眉杨Will
1、项目介绍
DeepSORT_YOLOv5_Pytorch 是一个高效的实时目标追踪系统,它结合了YOLOv5的先进目标检测能力和DeepSORT的优秀轨迹管理算法。这个项目旨在帮助开发者和研究人员轻松实现对视频或摄像头输入中多个移动对象的同时检测和连续追踪。
2、项目技术分析
YOLOv5
YOLOv5是You Only Look Once系列的最新版,以快速且准确的目标检测而著名。它使用了一种称为Anchor Box的技术,以及强大的深度学习模型,可以在一帧图像中快速预测出物体的边界框和类别概率。YOLOv5在PyTorch环境中实现了优化,支持多种GPU硬件,并提供不同大小的模型供性能与速度之间进行权衡。
DeepSORT
DeepSORT是一个基于卡尔曼滤波和Re-Identification(ReID)的多目标追踪框架。它引入了一个深度学习的特征提取网络来计算每个目标的独特标识,即使目标暂时消失,也能在它们再次出现时恢复追踪。
在这个项目中,DeepSORT被整合到YOLOv5之后,用于处理YOLOv5提供的目标检测结果,实现目标身份的持久追踪。
3、项目及技术应用场景
- 视频监控:实时分析视频流,自动追踪特定目标,如车辆、行人等。
- 无人驾驶:辅助车辆理解周围环境,跟踪其他道路使用者。
- 体育赛事分析:追踪运动员的动作和路径,提供比赛策略分析数据。
- 人机交互:在虚拟现实或增强现实中识别并追踪用户的动作。
4、项目特点
- 易用性:通过简单的命令行参数即可运行,无需复杂的设置。
- 高效性:利用YOLOv5的强大检测和DeepSORT的精确追踪,实现高效率的实时处理。
- 兼容性:支持Python 3.8以上版本和PyTorch 1.6.0+,可方便地在各种硬件配置上运行。
- 可扩展性:项目代码结构清晰,易于添加新的功能或自定义模型。
要开始使用这个项目,只需按照README中的指示创建虚拟环境,安装依赖项,下载预训练权重,然后运行简单的Python脚本。不论你是想深入了解目标检测和追踪技术,还是需要在实际应用中部署这样的系统,DeepSORT_YOLOv5_Pytorch 都是你理想的选择。
# 创建Python环境
conda create -n py38 python=3.8
conda activate py38
# 安装PyTorch和相关库
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
# 安装依赖
pip install -r requirements.txt
# 运行项目
python main.py --input_path [VIDEO_FILE_NAME]
# 或者在Webcam上运行
python main.py --cam 0 --display
参考项目源码和文档,你可以进一步定制此系统以适应你的具体需求。立即行动起来,体验一下DeepSORT_YOLOv5_Pytorch 带来的强大追踪功能吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
270
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869