Apache Hudi 技术文档
2024-12-23 01:46:23作者:幸俭卉
1. 安装指南
1.1 环境要求
在开始安装之前,请确保您的系统满足以下要求:
- Unix-like 系统(如 Linux, Mac OS X)
- Java 8, 11 或 17
- Git
- Maven(版本 >= 3.6.0)
1.2 从源码构建
-
克隆代码库并进入项目目录:
git clone https://github.com/apache/hudi.git && cd hudi -
使用 Maven 构建项目:
mvn clean package -DskipTests -
启动 Spark Shell:
spark-3.5.0-bin-hadoop3/bin/spark-shell \ --jars `ls packaging/hudi-spark-bundle/target/hudi-spark3.5-bundle_2.12-*.*.*-SNAPSHOT.jar` \ --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \ --conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension' \ --conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog' \ --conf 'spark.kryo.registrator=org.apache.spark.HoodieSparkKryoRegistrar'
1.3 构建不同版本的 Spark 和 Flink
- Spark 版本:默认使用 Spark 3.5.x 和 Scala 2.12。可以通过
-Dspark3.x参数指定其他版本,例如-Dspark3.4表示使用 Spark 3.4.x。 - Flink 版本:默认使用 Flink 1.20.x。可以通过
-Dflink1.x参数指定其他版本,例如-Dflink1.19表示使用 Flink 1.19。
2. 项目的使用说明
2.1 项目概述
Apache Hudi 是一个开源的数据湖平台,支持在云环境中高效地摄取、索引、存储、服务、转换和管理数据。Hudi 提供了多种功能,包括数据摄取、存储优化、索引、写入和查询等。
2.2 主要功能
- 数据摄取:支持多种文件格式和数据源,如 Apache Kafka、数据库变更日志等。
- 存储优化:自动管理文件大小和布局,支持行和列存储格式。
- 索引:提供可扩展的索引系统,加速查询。
- 写入:支持原子提交、快照隔离和并发控制。
- 查询:支持多种查询类型,如快照查询、增量查询、变更数据捕获查询等。
2.3 使用场景
Hudi 适用于需要高效管理大规模数据湖的场景,特别是在云环境中进行数据摄取、存储和查询的场景。
3. 项目API使用文档
3.1 核心API
- HoodieWriteClient:用于数据写入的核心API,支持插入、更新和删除操作。
- HoodieReadClient:用于数据读取的核心API,支持快照查询、增量查询等。
3.2 配置参数
- spark.serializer:指定序列化器,推荐使用
org.apache.spark.serializer.KryoSerializer。 - spark.sql.extensions:启用 Hudi 的 SQL 扩展。
- spark.sql.catalog.spark_catalog:指定 Hudi 的 Catalog 实现。
3.3 示例代码
import org.apache.hudi.QuickstartUtils._
import org.apache.spark.sql.SaveMode._
val dataGen = new DataGenerator()
val inserts = convertToStringList(dataGen.generateInserts(100))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, "hudi_table").
mode(Overwrite).
save("path/to/hudi_table")
4. 项目安装方式
4.1 通过 Maven 安装
在项目的 pom.xml 中添加以下依赖:
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-spark-bundle</artifactId>
<version>0.13.0</version>
</dependency>
4.2 通过 Spark Shell 使用
在启动 Spark Shell 时,加载 Hudi 的 JAR 包:
spark-shell --jars hudi-spark-bundle_2.12-0.13.0.jar
4.3 通过 Flink 使用
在 Flink 项目中,添加 Hudi 的依赖:
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-flink-bundle</artifactId>
<version>0.13.0</version>
</dependency>
通过以上步骤,您可以成功安装并使用 Apache Hudi 项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248