Word2vec 开源项目使用教程
2024-08-19 14:26:08作者:邬祺芯Juliet
1. 项目的目录结构及介绍
Word2vec 项目的目录结构如下:
word2vec/
├── demo-classes.sh
├── demo-hs.sh
├── demo-phrases.sh
├── demo-word.sh
├── makefile
├── questions-phrases.txt
├── questions-words.txt
├── README.md
├── src/
│ ├── distance.c
│ ├── word2vec.c
│ ├── word2phrase.c
│ ├── compute-accuracy.c
│ ├── ...
├── scripts/
│ ├── ...
├── data/
│ ├── ...
└── test/
├── ...
主要目录和文件介绍:
- demo-classes.sh, demo-hs.sh, demo-phrases.sh, demo-word.sh: 这些是示例脚本,用于演示如何使用 Word2vec 进行不同的任务。
- makefile: 用于编译项目的 Makefile 文件。
- questions-phrases.txt, questions-words.txt: 用于测试词向量质量的问答文件。
- README.md: 项目的主文档,包含项目的详细介绍和使用说明。
- src/: 包含项目的源代码文件,如
word2vec.c,word2phrase.c等。 - scripts/: 包含一些辅助脚本。
- data/: 用于存放训练数据。
- test/: 包含测试文件和测试脚本。
2. 项目的启动文件介绍
Word2vec 项目的主要启动文件是 src/word2vec.c。这个文件包含了 Word2vec 的核心算法实现。要编译和运行这个文件,可以使用以下命令:
cd src
make
./word2vec
word2vec 可执行文件可以通过命令行参数进行配置,例如:
./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15
3. 项目的配置文件介绍
Word2vec 项目没有明确的配置文件,但可以通过命令行参数进行配置。以下是一些常用的命令行参数:
- -train: 指定训练数据的路径。
- -output: 指定输出词向量的路径。
- -cbow: 使用 CBOW 模型(1)或 Skip-gram 模型(0)。
- -size: 词向量的维度。
- -window: 上下文窗口的大小。
- -negative: 负采样的数量。
- -hs: 是否使用 Hierarchical Softmax。
- -sample: 子采样阈值。
- -threads: 训练时使用的线程数。
- -binary: 输出文件是否为二进制格式。
- -iter: 训练迭代次数。
通过这些参数,可以灵活地配置和调整 Word2vec 的训练过程。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248