Word2Vec PyTorch 项目教程
2024-09-17 00:07:36作者:裘旻烁
1. 项目目录结构及介绍
word2vec_pytorch/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── __init__.py
│ └── word2vec.py
├── notebooks/
│ └── exploration.ipynb
├── scripts/
│ ├── preprocess.py
│ └── train.py
├── tests/
│ ├── __init__.py
│ └── test_word2vec.py
├── config.yaml
├── main.py
├── README.md
└── requirements.txt
目录结构介绍
- data/: 存放数据文件的目录,包括原始数据 (
raw/
) 和处理后的数据 (processed/
)。 - models/: 存放模型定义的目录,
word2vec.py
文件中定义了 Word2Vec 模型。 - notebooks/: 存放 Jupyter Notebook 文件,用于数据探索和模型分析。
- scripts/: 存放脚本文件,
preprocess.py
用于数据预处理,train.py
用于模型训练。 - tests/: 存放测试文件,用于测试模型的正确性。
- config.yaml: 项目的配置文件,包含训练参数、数据路径等信息。
- main.py: 项目的启动文件,用于启动训练或测试。
- README.md: 项目的说明文件,包含项目的基本信息和使用说明。
- requirements.txt: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
main.py
main.py
是项目的启动文件,负责加载配置、初始化模型、加载数据并启动训练或测试。以下是 main.py
的主要功能模块:
import argparse
import yaml
from models.word2vec import Word2Vec
from scripts.train import train
from scripts.preprocess import preprocess
def main():
parser = argparse.ArgumentParser(description="Word2Vec PyTorch Implementation")
parser.add_argument('--config', type=str, default='config.yaml', help='Path to the config file')
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'], help='Mode to run the script')
args = parser.parse_args()
with open(args.config, 'r') as f:
config = yaml.safe_load(f)
if args.mode == 'train':
preprocess(config)
model = Word2Vec(config)
train(model, config)
elif args.mode == 'test':
# 测试模式的代码
pass
if __name__ == "__main__":
main()
功能介绍
- 参数解析: 使用
argparse
解析命令行参数,支持配置文件路径和运行模式(训练或测试)。 - 配置加载: 从
config.yaml
文件中加载配置参数。 - 数据预处理: 调用
preprocess.py
中的preprocess
函数进行数据预处理。 - 模型初始化: 初始化
Word2Vec
模型。 - 训练启动: 调用
train.py
中的train
函数启动模型训练。
3. 项目的配置文件介绍
config.yaml
config.yaml
是项目的配置文件,包含训练参数、数据路径等信息。以下是一个示例配置文件的内容:
data:
raw_data_path: "data/raw/corpus.txt"
processed_data_path: "data/processed/processed_corpus.txt"
model:
embedding_dim: 100
context_size: 2
training:
batch_size: 64
epochs: 10
learning_rate: 0.001
device: "cuda"
配置项介绍
-
data:
raw_data_path
: 原始数据文件路径。processed_data_path
: 处理后的数据文件路径。
-
model:
embedding_dim
: 词嵌入的维度。context_size
: 上下文窗口大小。
-
training:
batch_size
: 批处理大小。epochs
: 训练轮数。learning_rate
: 学习率。device
: 训练设备(cuda
或cpu
)。
通过修改 config.yaml
文件中的配置项,可以调整模型的训练参数和数据路径,以适应不同的训练需求。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28