Word2Vec PyTorch 项目教程
2024-09-17 21:07:51作者:裘旻烁
1. 项目目录结构及介绍
word2vec_pytorch/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── __init__.py
│ └── word2vec.py
├── notebooks/
│ └── exploration.ipynb
├── scripts/
│ ├── preprocess.py
│ └── train.py
├── tests/
│ ├── __init__.py
│ └── test_word2vec.py
├── config.yaml
├── main.py
├── README.md
└── requirements.txt
目录结构介绍
- data/: 存放数据文件的目录,包括原始数据 (
raw/) 和处理后的数据 (processed/)。 - models/: 存放模型定义的目录,
word2vec.py文件中定义了 Word2Vec 模型。 - notebooks/: 存放 Jupyter Notebook 文件,用于数据探索和模型分析。
- scripts/: 存放脚本文件,
preprocess.py用于数据预处理,train.py用于模型训练。 - tests/: 存放测试文件,用于测试模型的正确性。
- config.yaml: 项目的配置文件,包含训练参数、数据路径等信息。
- main.py: 项目的启动文件,用于启动训练或测试。
- README.md: 项目的说明文件,包含项目的基本信息和使用说明。
- requirements.txt: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
main.py
main.py 是项目的启动文件,负责加载配置、初始化模型、加载数据并启动训练或测试。以下是 main.py 的主要功能模块:
import argparse
import yaml
from models.word2vec import Word2Vec
from scripts.train import train
from scripts.preprocess import preprocess
def main():
parser = argparse.ArgumentParser(description="Word2Vec PyTorch Implementation")
parser.add_argument('--config', type=str, default='config.yaml', help='Path to the config file')
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'], help='Mode to run the script')
args = parser.parse_args()
with open(args.config, 'r') as f:
config = yaml.safe_load(f)
if args.mode == 'train':
preprocess(config)
model = Word2Vec(config)
train(model, config)
elif args.mode == 'test':
# 测试模式的代码
pass
if __name__ == "__main__":
main()
功能介绍
- 参数解析: 使用
argparse解析命令行参数,支持配置文件路径和运行模式(训练或测试)。 - 配置加载: 从
config.yaml文件中加载配置参数。 - 数据预处理: 调用
preprocess.py中的preprocess函数进行数据预处理。 - 模型初始化: 初始化
Word2Vec模型。 - 训练启动: 调用
train.py中的train函数启动模型训练。
3. 项目的配置文件介绍
config.yaml
config.yaml 是项目的配置文件,包含训练参数、数据路径等信息。以下是一个示例配置文件的内容:
data:
raw_data_path: "data/raw/corpus.txt"
processed_data_path: "data/processed/processed_corpus.txt"
model:
embedding_dim: 100
context_size: 2
training:
batch_size: 64
epochs: 10
learning_rate: 0.001
device: "cuda"
配置项介绍
-
data:
raw_data_path: 原始数据文件路径。processed_data_path: 处理后的数据文件路径。
-
model:
embedding_dim: 词嵌入的维度。context_size: 上下文窗口大小。
-
training:
batch_size: 批处理大小。epochs: 训练轮数。learning_rate: 学习率。device: 训练设备(cuda或cpu)。
通过修改 config.yaml 文件中的配置项,可以调整模型的训练参数和数据路径,以适应不同的训练需求。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19