VectorInstitute/fed-rag项目:RAG系统微调实战指南
2025-06-19 21:24:37作者:霍妲思
前言
在自然语言处理领域,检索增强生成(Retrieval-Augmented Generation,RAG)系统已成为结合信息检索与文本生成能力的强大工具。本文将基于VectorInstitute的fed-rag项目,详细介绍如何对RAG系统进行微调,以提升其在特定任务上的表现。
环境准备
在开始之前,需要确保已安装必要的依赖项。fed-rag项目提供了HuggingFace相关的额外组件,这对于后续的模型微调至关重要。
pip install fed-rag[huggingface]
这个命令会安装HuggingFace模型及训练工具,为后续的检索器和生成器微调做好准备。
训练数据集构建
微调RAG系统需要一个问答形式的数据集,每个训练样本本质上是一个(查询,响应)对。这种结构有助于系统学习如何根据查询检索相关信息并生成准确回答。
from datasets import Dataset
train_dataset = Dataset.from_dict(
{
"query": [
"什么是机器学习?",
"告诉我关于气候变化的信息",
"计算机是如何工作的?",
],
"response": [
"机器学习是人工智能的一个分支,专注于从数据中学习的算法。",
"气候变化指的是温度和天气模式的长期变化。",
"计算机通过使用逻辑门和电子元件处理信息来工作。",
],
}
)
在实际应用中,建议准备更丰富多样的训练数据,覆盖目标领域的各种查询场景。
训练器定义
fed-rag项目提供了两种核心训练器,分别针对RAG系统的不同组件:
-
生成器训练器:
HuggingFaceTrainerForRALT
- 使用检索增强的指令示例微调大语言模型(LLM)
- 通过结合检索到的上下文信息优化生成质量
-
检索器训练器:
HuggingFaceTrainerForLSR
- 基于检索块分数和生成器LLM的对数概率微调检索模型
- 利用真实响应优化检索相关性
from fed_rag.trainers.huggingface.ralt import HuggingFaceTrainerForRALT
from fed_rag.trainers.huggingface.lsr import HuggingFaceTrainerForLSR
# 假设rag_system已从之前的快速入门中构建
generator_trainer = HuggingFaceTrainerForRALT(
rag_system=rag_system,
train_dataset=train_dataset,
)
retriever_trainer = HuggingFaceTrainerForLSR(
rag_system=rag_system,
train_dataset=train_dataset,
)
训练管理器
为了协调RAG系统中不同组件的训练过程,fed-rag提供了HuggingFaceRAGTrainerManager
类。这个管理器封装了训练逻辑,并支持将任务转换为联邦学习形式。
from fed_rag.trainer_managers.huggingface import HuggingFaceRAGTrainerManager
manager = HuggingFaceRAGTrainerManager(
mode="retriever", # 可选"retriever"或"generator"
retriever_trainer=retriever_trainer,
generator_trainer=generator_trainer,
)
# 执行训练
train_result = manager.train()
print(f"训练损失: {train_result.loss}")
# 可选:获取联邦学习任务
fl_task = manager.get_federated_task()
训练模式选择
训练管理器支持两种主要模式:
-
检索器模式:专注于优化检索组件的性能
- 调整检索模型参数
- 提高文档检索的相关性
-
生成器模式:专注于优化生成组件的性能
- 调整语言模型参数
- 改善基于检索结果的回答质量
微调策略建议
- 交替训练:可以交替进行检索器和生成器的微调,逐步提升系统整体性能
- 评估指标:除了训练损失,还应关注最终问答任务的准确率等指标
- 数据增强:考虑使用数据增强技术扩充训练数据集
- 学习率调度:合理设置学习率调度策略以避免过拟合
结语
通过fed-rag项目提供的工具,开发者可以方便地对RAG系统进行端到端的微调。这种微调不仅能提升系统在特定领域的表现,还能通过联邦学习的方式在保护数据隐私的前提下进行协作训练。希望本指南能帮助您快速上手RAG系统的微调工作。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133