Django Ninja 中嵌套 Schema 解析问题的解决方案
问题背景
在使用 Django Ninja 框架开发 REST API 时,开发者经常会遇到需要返回嵌套数据结构的情况。本文探讨了一个典型问题:当 Schema 中包含嵌套的 Schema 时,子 Schema 的 resolve 方法没有被正确调用的问题。
问题现象
开发者定义了一个 DetailedAlbumOut
Schema,其中包含一个 ArtistOut
Schema 的列表。ArtistOut
Schema 中有一个 url
字段需要通过 resolve_url
方法动态计算生成。当单独使用 ArtistOut
Schema 时一切正常,但在嵌套使用时,resolve_url
方法没有被调用,导致验证错误。
问题分析
通过分析问题代码,发现以下几个关键点:
-
Resolver 方法签名不正确:原始代码中的 resolve 方法只接收了
obj
参数,而实际上 Django Ninja 会传递上下文对象context
。 -
请求对象传递方式不当:开发者尝试通过直接为对象添加
request
属性的方式来传递请求对象,这不是 Django Ninja 推荐的做法。 -
数据转换不完整:在处理输入数据时,没有正确地将 Schema 对象转换为字典,导致后续操作出现问题。
解决方案
1. 正确使用 Resolver 方法
Django Ninja 的 resolve 方法应该接收两个参数:obj
和 context
。context
参数包含了请求上下文,可以通过它获取 request
对象。
@staticmethod
def resolve_url(obj, context):
artist_url = reverse("api-1.0:retrieve_artist", kwargs={"id": obj.id})
return context["request"].build_absolute_uri(artist_url)
2. 使用上下文传递请求对象
不再需要手动为对象添加 request
属性,Django Ninja 会自动将请求对象放入上下文中。
3. 完整的数据转换
在处理输入数据时,确保将 Schema 对象转换为字典:
data = payload.dict()
最佳实践
-
Resolver 方法设计:
- 总是包含
obj
和context
两个参数 - 从
context
中获取请求对象 - 保持方法简洁,只负责计算特定字段
- 总是包含
-
嵌套 Schema 使用:
- 确保所有子 Schema 的 resolve 方法都遵循相同的参数约定
- 在测试时先单独测试子 Schema,再测试嵌套情况
-
请求处理:
- 避免直接修改模型实例添加请求对象
- 利用 Django Ninja 提供的上下文机制
总结
Django Ninja 提供了强大的 Schema 功能来处理复杂的数据结构。当遇到嵌套 Schema 的 resolve 方法不被调用的问题时,开发者应该:
- 检查 resolve 方法的参数是否正确
- 确保使用了正确的上下文传递方式
- 验证数据转换过程是否完整
通过遵循这些最佳实践,可以避免类似问题的发生,构建出更加健壮的 API 接口。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









