Django Ninja 中嵌套 Schema 解析问题的解决方案
问题背景
在使用 Django Ninja 框架开发 REST API 时,开发者经常会遇到需要返回嵌套数据结构的情况。本文探讨了一个典型问题:当 Schema 中包含嵌套的 Schema 时,子 Schema 的 resolve 方法没有被正确调用的问题。
问题现象
开发者定义了一个 DetailedAlbumOut Schema,其中包含一个 ArtistOut Schema 的列表。ArtistOut Schema 中有一个 url 字段需要通过 resolve_url 方法动态计算生成。当单独使用 ArtistOut Schema 时一切正常,但在嵌套使用时,resolve_url 方法没有被调用,导致验证错误。
问题分析
通过分析问题代码,发现以下几个关键点:
-
Resolver 方法签名不正确:原始代码中的 resolve 方法只接收了
obj参数,而实际上 Django Ninja 会传递上下文对象context。 -
请求对象传递方式不当:开发者尝试通过直接为对象添加
request属性的方式来传递请求对象,这不是 Django Ninja 推荐的做法。 -
数据转换不完整:在处理输入数据时,没有正确地将 Schema 对象转换为字典,导致后续操作出现问题。
解决方案
1. 正确使用 Resolver 方法
Django Ninja 的 resolve 方法应该接收两个参数:obj 和 context。context 参数包含了请求上下文,可以通过它获取 request 对象。
@staticmethod
def resolve_url(obj, context):
artist_url = reverse("api-1.0:retrieve_artist", kwargs={"id": obj.id})
return context["request"].build_absolute_uri(artist_url)
2. 使用上下文传递请求对象
不再需要手动为对象添加 request 属性,Django Ninja 会自动将请求对象放入上下文中。
3. 完整的数据转换
在处理输入数据时,确保将 Schema 对象转换为字典:
data = payload.dict()
最佳实践
-
Resolver 方法设计:
- 总是包含
obj和context两个参数 - 从
context中获取请求对象 - 保持方法简洁,只负责计算特定字段
- 总是包含
-
嵌套 Schema 使用:
- 确保所有子 Schema 的 resolve 方法都遵循相同的参数约定
- 在测试时先单独测试子 Schema,再测试嵌套情况
-
请求处理:
- 避免直接修改模型实例添加请求对象
- 利用 Django Ninja 提供的上下文机制
总结
Django Ninja 提供了强大的 Schema 功能来处理复杂的数据结构。当遇到嵌套 Schema 的 resolve 方法不被调用的问题时,开发者应该:
- 检查 resolve 方法的参数是否正确
- 确保使用了正确的上下文传递方式
- 验证数据转换过程是否完整
通过遵循这些最佳实践,可以避免类似问题的发生,构建出更加健壮的 API 接口。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00