Point-BERT:3D点云变换器预训练指南
项目介绍
Point-BERT 是一项基于 CVPR 2022 的研究,引入了一种新的学习范式,旨在将 BERT 的概念扩展到3D点云领域。受 BERT 启发,它设计了“Masked Point Modeling”(MPM)任务来预训练点云变换器。该方法首先将点云分割成多个局部补丁,并通过离散变分自编码器(dVAE)创建一个点云Tokenizer,以生成含有有意义局部信息的离散点令牌。接着,随机掩蔽输入点云的部分补丁并送入骨干变换器,目标是恢复被掩蔽位置上的原始点令牌,在Tokenizer获得的点令牌监督下进行。
项目快速启动
要快速启动 Point-BERT,你需要确保你的开发环境已满足以下要求:
- Python: 3.7
- PyTorch: >= 1.7.0
- CUDA: >= 10.2
- GCC: >= 4.9
- 另外还需要安装
torchvision,timm,open3d, 和tensorboardX。
安装必要的库和构建扩展可以按以下步骤执行:
pip install -r requirements.txt
# 构建Chamfer Distance扩展
bash install.sh
# 安装其他必要组件,例如PointNet++
pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"
# 安装GPU版本kNN
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl
然后,为了在ShapeNet上预训练Point-BERT模型,运行以下命令(确保先完成配置文件中的ckpt路径配置):
bash scripts/dist_train_BERT.sh <NUM_GPU> <port>
--config cfgs/Mixup_models/Point-BERT.yaml
--exp_name pointBERT_pretrain [--val_freq 10]
这里的<NUM_GPU>指定了使用的GPU数量,<port>用于指定分布式训练的端口,val_freq控制评估频率(可选)。
应用案例和最佳实践
模型微调
假设你已经有一个预训练好的Point-BERT模型,你可以将其微调至特定任务,例如ModelNet40分类。下面是如何在ModelNet40数据集上微调的示例:
bash scripts/train_BERT.sh <GPU_IDS>
--config cfgs/ModelNet_models/PointTransformer.yaml
--finetune_model
--ckpts <pretrained_model_path>
--exp_name <your_experiment_name>
替换 <GPU_IDS> 为你的GPU编号,<pretrained_model_path> 为预训练模型的路径。
可视化
为了可视化Point-BERT重建的被掩蔽点云结果,可以在预训练完成后,使用提供的脚本:
bash scripts/test.sh <GPU_IDS>
--ckpts <path_to_trained_model>
--config cfgs/相关_config_yaml
--exp_name <experiment_name>
典型生态项目
Point-BERT不仅仅限于其本身的应用,它可以作为点云处理领域的一个基础工具包,促进一系列下游任务的研究与发展,包括但不限于对象识别、形状分析、以及部分分割等。社区成员和开发者可以根据Point-BERT的核心思想,开发出更多适应特定场景或需求的算法和应用。
由于该项目集中于点云数据的学习和处理,典型的生态项目可能围绕着增强点云处理能力、多模态融合(如结合图像信息)、或是针对特定行业(如自动驾驶、工业检测)的定制解决方案进行。
请注意,实际应用和生态建设需考虑具体场景的数据特性,结合Point-BERT的方法优势,进行适当的技术调整与创新。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00