Point-BERT:3D点云变换器预训练指南
项目介绍
Point-BERT 是一项基于 CVPR 2022 的研究,引入了一种新的学习范式,旨在将 BERT 的概念扩展到3D点云领域。受 BERT 启发,它设计了“Masked Point Modeling”(MPM)任务来预训练点云变换器。该方法首先将点云分割成多个局部补丁,并通过离散变分自编码器(dVAE)创建一个点云Tokenizer,以生成含有有意义局部信息的离散点令牌。接着,随机掩蔽输入点云的部分补丁并送入骨干变换器,目标是恢复被掩蔽位置上的原始点令牌,在Tokenizer获得的点令牌监督下进行。
项目快速启动
要快速启动 Point-BERT,你需要确保你的开发环境已满足以下要求:
- Python: 3.7
- PyTorch: >= 1.7.0
- CUDA: >= 10.2
- GCC: >= 4.9
- 另外还需要安装
torchvision,timm,open3d, 和tensorboardX。
安装必要的库和构建扩展可以按以下步骤执行:
pip install -r requirements.txt
# 构建Chamfer Distance扩展
bash install.sh
# 安装其他必要组件,例如PointNet++
pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"
# 安装GPU版本kNN
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl
然后,为了在ShapeNet上预训练Point-BERT模型,运行以下命令(确保先完成配置文件中的ckpt路径配置):
bash scripts/dist_train_BERT.sh <NUM_GPU> <port>
--config cfgs/Mixup_models/Point-BERT.yaml
--exp_name pointBERT_pretrain [--val_freq 10]
这里的<NUM_GPU>指定了使用的GPU数量,<port>用于指定分布式训练的端口,val_freq控制评估频率(可选)。
应用案例和最佳实践
模型微调
假设你已经有一个预训练好的Point-BERT模型,你可以将其微调至特定任务,例如ModelNet40分类。下面是如何在ModelNet40数据集上微调的示例:
bash scripts/train_BERT.sh <GPU_IDS>
--config cfgs/ModelNet_models/PointTransformer.yaml
--finetune_model
--ckpts <pretrained_model_path>
--exp_name <your_experiment_name>
替换 <GPU_IDS> 为你的GPU编号,<pretrained_model_path> 为预训练模型的路径。
可视化
为了可视化Point-BERT重建的被掩蔽点云结果,可以在预训练完成后,使用提供的脚本:
bash scripts/test.sh <GPU_IDS>
--ckpts <path_to_trained_model>
--config cfgs/相关_config_yaml
--exp_name <experiment_name>
典型生态项目
Point-BERT不仅仅限于其本身的应用,它可以作为点云处理领域的一个基础工具包,促进一系列下游任务的研究与发展,包括但不限于对象识别、形状分析、以及部分分割等。社区成员和开发者可以根据Point-BERT的核心思想,开发出更多适应特定场景或需求的算法和应用。
由于该项目集中于点云数据的学习和处理,典型的生态项目可能围绕着增强点云处理能力、多模态融合(如结合图像信息)、或是针对特定行业(如自动驾驶、工业检测)的定制解决方案进行。
请注意,实际应用和生态建设需考虑具体场景的数据特性,结合Point-BERT的方法优势,进行适当的技术调整与创新。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00