RDKit中FindPotentialStereo()函数在cleanIt参数为False时的潜在问题分析
2025-06-28 14:58:08作者:薛曦旖Francesca
问题背景
在化学信息学领域,分子立体化学信息的识别和处理是一个重要课题。RDKit作为一款广泛使用的开源化学信息学工具包,提供了FindPotentialStereo()
函数用于识别分子中潜在的立体中心。然而,近期发现该函数在某些情况下会遗漏部分立体中心信息,特别是当cleanIt
参数设置为False时。
问题重现
我们通过两个不同的SMILES字符串构建相同的分子结构,观察FindPotentialStereo()
函数的输出差异:
ms = [Chem.MolFromSmiles(x) for x in ('C[C@H](F)C(C)[C@H](F)C','CC([C@H](C)F)[C@@H](C)F')]
Chem.MolToSmiles(ms[0]) == Chem.MolToSmiles(ms[1]) # 返回True,确认是相同分子
# 对第一个分子测试
len(Chem.FindPotentialStereo(ms[0])), len(Chem.FindPotentialStereo(ms[0], cleanIt=True))
# 输出(2, 3)
# 对第二个分子测试
len(Chem.FindPotentialStereo(ms[1])), len(Chem.FindPotentialStereo(ms[1], cleanIt=True))
# 输出(3, 3)
从结果可以看出,对于相同的分子结构,当cleanIt
参数为False时,第一个SMILES输入只识别出了2个立体中心,而实际上应该识别出3个。
问题分析
这个问题的核心在于FindPotentialStereo()
函数在cleanIt=False
模式下的处理逻辑存在缺陷。具体表现为:
- 函数对分子结构的初始分析可能依赖于原子和键的遍历顺序
- 不同的SMILES输入可能导致分子内部表示存在细微差异
- 当
cleanIt=False
时,函数可能没有完全重设所有潜在的立体中心标记 - 某些立体中心的识别可能被遗漏,特别是当它们位于分支较多的区域时
技术影响
这个bug会对以下场景产生影响:
- 分子立体化学信息的完整性检查
- 基于立体中心的分子相似性比较
- 立体化学感知的分子转换操作
- 需要精确识别所有潜在立体中心的药物设计流程
解决方案
RDKit开发团队已经修复了这个问题。修复的核心思路是:
- 确保无论输入分子的内部表示如何,都能一致地识别所有潜在立体中心
- 改进立体中心标记的重置逻辑
- 增强对分支结构区域立体中心的识别能力
最佳实践建议
为了避免类似问题,建议用户:
- 在使用
FindPotentialStereo()
时,考虑设置cleanIt=True
以确保完整识别 - 对于关键应用,验证函数返回的立体中心数量是否符合预期
- 使用规范化的分子表示(如先转换为规范SMILES)作为输入
- 定期更新RDKit版本以获取最新的bug修复
总结
立体化学信息的正确处理对于化学信息学应用至关重要。RDKit团队对此类问题的快速响应体现了开源社区对软件质量的重视。用户在使用相关功能时应当了解潜在的限制,并采用适当的工作流程来确保结果的可靠性。
登录后查看全文
热门项目推荐
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
2025百大提名项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp博客页面工作坊中的断言方法优化建议6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp论坛排行榜项目中的错误日志规范要求8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp课程视频测验中的Tab键导航问题解析
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
713
459

React Native鸿蒙化仓库
C++
143
226

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
306
1.04 K

openGauss kernel ~ openGauss is an open source relational database management system
C++
105
161

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
367
357

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
53
15

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
116
255

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.02 K
0

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
591
47

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
706
97