Qwen1.5模型获取下一个token概率分布的技术解析
2025-05-12 12:24:40作者:宗隆裙
背景介绍
在自然语言处理领域,大型语言模型(LLM)的核心能力之一就是预测下一个最可能出现的token。理解模型如何生成这些预测对于研究人员和开发者来说至关重要。本文将深入探讨在使用Qwen1.5系列模型时,如何正确获取模型对下一个token的概率分布预测。
问题现象
许多开发者在尝试使用Qwen1.5模型获取下一个token的概率分布时,会遇到输出结果全为-inf的情况。这看似异常的现象实际上是由于模型输出的特殊表示方式造成的。
技术原理
Qwen1.5模型在生成过程中,默认只会为非零概率的token保留其logits值,而将其他token的logits设为负无穷(-inf)。这种设计主要是出于计算效率的考虑,因为现代大型语言模型的词汇表通常非常庞大(数万到数十万token),而实际每个位置只有少量token有显著概率。
正确处理方法
要获取有意义的概率分布,需要以下步骤:
- 应用softmax函数:将模型的原始输出(logits)转换为概率分布
- 过滤有效概率:只保留概率大于0的token
示例代码实现:
# 获取模型输出
output = model.generate(
input_ids,
max_new_tokens=10,
return_dict_in_generate=True,
output_scores=True
)
# 处理概率分布
prob_distributions = [
{i: p for i, p in enumerate(prob[0]) if p > 0}
for prob in [torch.softmax(score, dim=1).tolist()
for score in output.scores]
]
不同生成模式下的表现
-
确定性生成(do_sample=False):
- 概率分布通常集中在少数几个token上
- 经常会出现某个token概率为1.0的情况
-
随机采样(do_sample=True):
- 概率分布更加分散
- 多个token可能有相近的概率值
- 更适合需要创造性的文本生成任务
模型选择建议
- 基础模型通常比聊天模型更适合获取概率分布
- 量化模型可能会影响概率分布的准确性
- 模型规模越大,概率分布通常越平滑
实际应用场景
- 模型行为分析:通过观察概率分布了解模型的决策过程
- 不确定性估计:根据概率分布判断模型对特定预测的置信度
- 自定义解码策略:基于概率分布实现特殊的文本生成算法
- 模型对比:通过概率分布比较不同模型的预测差异
注意事项
- 概率分布会受到温度参数(temperature)的显著影响
- 不同的生成配置(top-k, top-p等)会改变概率分布的表现
- 在实际应用中,建议对概率分布进行适当的平滑或截断处理
通过本文的介绍,开发者可以更好地理解和使用Qwen1.5模型的概率预测能力,为各种自然语言处理任务提供更强大的支持。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355