Qwen1.5模型获取下一个token概率分布的技术解析
2025-05-12 03:45:33作者:宗隆裙
背景介绍
在自然语言处理领域,大型语言模型(LLM)的核心能力之一就是预测下一个最可能出现的token。理解模型如何生成这些预测对于研究人员和开发者来说至关重要。本文将深入探讨在使用Qwen1.5系列模型时,如何正确获取模型对下一个token的概率分布预测。
问题现象
许多开发者在尝试使用Qwen1.5模型获取下一个token的概率分布时,会遇到输出结果全为-inf的情况。这看似异常的现象实际上是由于模型输出的特殊表示方式造成的。
技术原理
Qwen1.5模型在生成过程中,默认只会为非零概率的token保留其logits值,而将其他token的logits设为负无穷(-inf)。这种设计主要是出于计算效率的考虑,因为现代大型语言模型的词汇表通常非常庞大(数万到数十万token),而实际每个位置只有少量token有显著概率。
正确处理方法
要获取有意义的概率分布,需要以下步骤:
- 应用softmax函数:将模型的原始输出(logits)转换为概率分布
- 过滤有效概率:只保留概率大于0的token
示例代码实现:
# 获取模型输出
output = model.generate(
input_ids,
max_new_tokens=10,
return_dict_in_generate=True,
output_scores=True
)
# 处理概率分布
prob_distributions = [
{i: p for i, p in enumerate(prob[0]) if p > 0}
for prob in [torch.softmax(score, dim=1).tolist()
for score in output.scores]
]
不同生成模式下的表现
-
确定性生成(do_sample=False):
- 概率分布通常集中在少数几个token上
- 经常会出现某个token概率为1.0的情况
-
随机采样(do_sample=True):
- 概率分布更加分散
- 多个token可能有相近的概率值
- 更适合需要创造性的文本生成任务
模型选择建议
- 基础模型通常比聊天模型更适合获取概率分布
- 量化模型可能会影响概率分布的准确性
- 模型规模越大,概率分布通常越平滑
实际应用场景
- 模型行为分析:通过观察概率分布了解模型的决策过程
- 不确定性估计:根据概率分布判断模型对特定预测的置信度
- 自定义解码策略:基于概率分布实现特殊的文本生成算法
- 模型对比:通过概率分布比较不同模型的预测差异
注意事项
- 概率分布会受到温度参数(temperature)的显著影响
- 不同的生成配置(top-k, top-p等)会改变概率分布的表现
- 在实际应用中,建议对概率分布进行适当的平滑或截断处理
通过本文的介绍,开发者可以更好地理解和使用Qwen1.5模型的概率预测能力,为各种自然语言处理任务提供更强大的支持。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
165
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
598
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
230
仓颉编译器源码及 cjdb 调试工具。
C++
123
671
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
196
72
仓颉编程语言测试用例。
Cangjie
36
672