SeqGPT:一盒即用的开放领域序列理解大模型
2024-05-31 21:51:35作者:钟日瑜

项目简介
SeqGPT,由阿里达摩院开发,是一款专门针对开放领域自然语言理解(NLU)的双语大型语言模型。这个模型不仅能够处理多样的NLU任务,如分类和提取,而且还经过了多元合成数据和高质量NLU数据的训练,旨在提供一种开箱即用的解决方案。
项目技术分析
SeqGPT的设计目标是超越传统的单任务处理方式,能应对所有可转化为原子任务组合的NLU挑战。其独特之处在于采用了先进的训练策略,利用丰富的合成数据增强模型的泛化能力和适应性。该模型包括一个560M参数的版本,并已经在ModelScope和Hugging Face上发布,便于开发者下载和直接使用。
此外,SeqGPT-7B1在与ChatGPT的人工评估中表现出色,在7个NLU任务上超过ChatGPT,尽管在情感分析、槽填充和自然语言推理方面稍逊一筹,这展示了其在不同场景下的广泛应用潜力。
应用场景
SeqGPT适用于广泛的场景,从聊天机器人到智能客服,再到文档理解和问答系统。它能够处理以下任务:
- 对话生成:与用户进行有意义的交互,回答各种问题。
- 情感分析:识别文本中的情绪倾向。
- 提供信息:根据用户的需求搜索并提供相关信息。
- 数据标注:自动为大量文本添加标签。
- 自然语言推理:判断两个句子之间的逻辑关系。
项目特点
- 跨语言能力:SeqGPT支持英语和中文两种语言,满足全球化需求。
- 开箱即用:无需复杂配置,只需简单几行代码即可实现快速部署和推理。
- 高效性能:在人类评估中表现出优于同类模型的能力。
- 多样化的训练数据:通过综合的数据增强,提升模型在各种任务上的表现。
- 广泛的应用范围:覆盖多个NLU领域,从基础问答到复杂的任务推理。
为了让你更直观地体验SeqGPT的强大功能,项目团队还提供了在线演示和API,方便用户直接试用和集成到自己的应用中。无论是研究者还是开发者,SeqGPT都是探索和实践NLU前沿技术的理想选择。
要开始你的SeqGPT之旅,请查看项目文档和示例代码,或者直接访问在线资源进行体验。如果你发现SeqGPT在你的工作中发挥了重要作用,别忘了引用他们的论文,以支持他们持续的创新工作!
@misc{yu2023seqgpt,
title={SeqGPT: An Out-of-the-box Large Language Model for Open Domain Sequence Understanding},
author={Tianyu Yu and Chengyue Jiang and Chao Lou and Shen Huang and Xiaobin Wang and Wei Liu and Jiong Cai and Yangning Li and Yinghui Li and Kewei Tu and Hai-Tao Zheng and Ningyu Zhang and Pengjun Xie and Fei Huang and Yong Jiang},
year={2023},
eprint={2308.10529},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
立即行动起来,探索SeqGPT所带来的无限可能吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881