Stable-Whisper与Intel GPU加速的集成实践
2025-07-07 19:35:31作者:虞亚竹Luna
概述
在语音识别领域,Whisper模型因其出色的性能而广受欢迎。本文将探讨如何将Stable-Whisper项目与Intel GPU加速技术相结合,实现高效的语音转录体验。
技术背景
Stable-Whisper是基于OpenAI Whisper模型的改进版本,提供了更稳定的时间戳和分段输出。而Intel的OpenVINO工具套件能够优化深度学习模型在Intel硬件上的性能表现,特别是在集成GPU上也能获得显著的加速效果。
集成方案
准备工作
首先需要安装必要的Python包:
- transformers
- optimum[intel]
- openvino
- stable-whisper
模型加载与转换
使用OpenVINO优化模型需要先将原始PyTorch模型转换为OpenVINO格式:
from optimum.intel.openvino import OVModelForSpeechSeq2Seq
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
model_id = "openai/whisper-small"
processor = AutoProcessor.from_pretrained(model_id)
pt_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id)
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(
model_id,
export=True,
compile=False
)
GPU加速配置
检测可用设备并将模型部署到Intel GPU:
import openvino as ov
core = ov.Core()
print(f"可用设备: {core.available_devices}")
device = 'GPU'
ov_model.to(device)
ov_model.compile()
与Stable-Whisper集成
创建自定义管道并与Stable-Whisper对接:
from transformers import pipeline
import stable_whisper
pipe = pipeline(
"automatic-speech-recognition",
model=ov_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
batch_size=16
)
model = stable_whisper.load_hf_whisper(model_id, pipeline=pipe)
result = model.transcribe(audio_file)
常见问题与解决方案
-
设备检测问题:确保系统已正确安装Intel GPU驱动和OpenVINO运行时。
-
批处理大小调整:根据GPU内存容量适当调整batch_size参数,过大可能导致内存溢出。
-
时间戳支持:当前OpenVINO版本的Whisper实现可能不完全支持token级时间戳,可暂时关闭word_timestamps功能。
-
多语言支持:使用多语言模型时需要显式设置is_multilingual=True参数。
性能优化建议
- 使用FP16精度可显著提升推理速度:
ov_model.half()
-
合理设置chunk_length_s参数,平衡内存使用和效率。
-
首次运行时导出模型并缓存,避免重复转换。
结论
通过将Stable-Whisper与Intel OpenVINO技术栈结合,开发者可以在Intel集成GPU上实现高效的语音转录解决方案。虽然目前在某些功能支持上仍有改进空间,但整体性能表现已经相当出色。随着OpenVINO生态的不断完善,这种集成方案将展现出更大的潜力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878