Stable-Whisper与Intel GPU加速的集成实践
2025-07-07 06:33:28作者:虞亚竹Luna
概述
在语音识别领域,Whisper模型因其出色的性能而广受欢迎。本文将探讨如何将Stable-Whisper项目与Intel GPU加速技术相结合,实现高效的语音转录体验。
技术背景
Stable-Whisper是基于OpenAI Whisper模型的改进版本,提供了更稳定的时间戳和分段输出。而Intel的OpenVINO工具套件能够优化深度学习模型在Intel硬件上的性能表现,特别是在集成GPU上也能获得显著的加速效果。
集成方案
准备工作
首先需要安装必要的Python包:
- transformers
- optimum[intel]
- openvino
- stable-whisper
模型加载与转换
使用OpenVINO优化模型需要先将原始PyTorch模型转换为OpenVINO格式:
from optimum.intel.openvino import OVModelForSpeechSeq2Seq
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
model_id = "openai/whisper-small"
processor = AutoProcessor.from_pretrained(model_id)
pt_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id)
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(
model_id,
export=True,
compile=False
)
GPU加速配置
检测可用设备并将模型部署到Intel GPU:
import openvino as ov
core = ov.Core()
print(f"可用设备: {core.available_devices}")
device = 'GPU'
ov_model.to(device)
ov_model.compile()
与Stable-Whisper集成
创建自定义管道并与Stable-Whisper对接:
from transformers import pipeline
import stable_whisper
pipe = pipeline(
"automatic-speech-recognition",
model=ov_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
batch_size=16
)
model = stable_whisper.load_hf_whisper(model_id, pipeline=pipe)
result = model.transcribe(audio_file)
常见问题与解决方案
-
设备检测问题:确保系统已正确安装Intel GPU驱动和OpenVINO运行时。
-
批处理大小调整:根据GPU内存容量适当调整batch_size参数,过大可能导致内存溢出。
-
时间戳支持:当前OpenVINO版本的Whisper实现可能不完全支持token级时间戳,可暂时关闭word_timestamps功能。
-
多语言支持:使用多语言模型时需要显式设置is_multilingual=True参数。
性能优化建议
- 使用FP16精度可显著提升推理速度:
ov_model.half()
-
合理设置chunk_length_s参数,平衡内存使用和效率。
-
首次运行时导出模型并缓存,避免重复转换。
结论
通过将Stable-Whisper与Intel OpenVINO技术栈结合,开发者可以在Intel集成GPU上实现高效的语音转录解决方案。虽然目前在某些功能支持上仍有改进空间,但整体性能表现已经相当出色。随着OpenVINO生态的不断完善,这种集成方案将展现出更大的潜力。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
183
13
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
105
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.86 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
732
70