Stable-Whisper与Intel GPU加速的集成实践
2025-07-07 08:43:44作者:虞亚竹Luna
概述
在语音识别领域,Whisper模型因其出色的性能而广受欢迎。本文将探讨如何将Stable-Whisper项目与Intel GPU加速技术相结合,实现高效的语音转录体验。
技术背景
Stable-Whisper是基于OpenAI Whisper模型的改进版本,提供了更稳定的时间戳和分段输出。而Intel的OpenVINO工具套件能够优化深度学习模型在Intel硬件上的性能表现,特别是在集成GPU上也能获得显著的加速效果。
集成方案
准备工作
首先需要安装必要的Python包:
- transformers
- optimum[intel]
- openvino
- stable-whisper
模型加载与转换
使用OpenVINO优化模型需要先将原始PyTorch模型转换为OpenVINO格式:
from optimum.intel.openvino import OVModelForSpeechSeq2Seq
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
model_id = "openai/whisper-small"
processor = AutoProcessor.from_pretrained(model_id)
pt_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id)
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(
model_id,
export=True,
compile=False
)
GPU加速配置
检测可用设备并将模型部署到Intel GPU:
import openvino as ov
core = ov.Core()
print(f"可用设备: {core.available_devices}")
device = 'GPU'
ov_model.to(device)
ov_model.compile()
与Stable-Whisper集成
创建自定义管道并与Stable-Whisper对接:
from transformers import pipeline
import stable_whisper
pipe = pipeline(
"automatic-speech-recognition",
model=ov_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
batch_size=16
)
model = stable_whisper.load_hf_whisper(model_id, pipeline=pipe)
result = model.transcribe(audio_file)
常见问题与解决方案
-
设备检测问题:确保系统已正确安装Intel GPU驱动和OpenVINO运行时。
-
批处理大小调整:根据GPU内存容量适当调整batch_size参数,过大可能导致内存溢出。
-
时间戳支持:当前OpenVINO版本的Whisper实现可能不完全支持token级时间戳,可暂时关闭word_timestamps功能。
-
多语言支持:使用多语言模型时需要显式设置is_multilingual=True参数。
性能优化建议
- 使用FP16精度可显著提升推理速度:
ov_model.half()
-
合理设置chunk_length_s参数,平衡内存使用和效率。
-
首次运行时导出模型并缓存,避免重复转换。
结论
通过将Stable-Whisper与Intel OpenVINO技术栈结合,开发者可以在Intel集成GPU上实现高效的语音转录解决方案。虽然目前在某些功能支持上仍有改进空间,但整体性能表现已经相当出色。随着OpenVINO生态的不断完善,这种集成方案将展现出更大的潜力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881