Stable-Whisper项目在MacOS MPS支持上的问题分析与解决方案
问题背景
在MacOS系统上使用Stable-Whisper项目进行语音转文字时,部分用户遇到了MPS(Metal Performance Shaders)支持问题。当尝试在M2 Pro芯片的Mac设备上运行模型时,系统会抛出"aten::empty.memory_format"操作未实现的错误。这个问题主要影响使用PyTorch 2.2版本及更高版本的用户。
技术分析
MPS是苹果提供的Metal Performance Shaders框架,它允许开发者利用苹果芯片的GPU能力来加速机器学习计算。在PyTorch中,MPS后端为苹果设备提供了原生的GPU加速支持。
出现这个错误的核心原因是PyTorch对某些稀疏张量操作的支持不完整。错误信息显示,系统尝试在'SparseMPS'后端上运行'aten::empty.memory_format'操作,但这个操作当前仅支持CPU、MPS等有限的后端。
解决方案
方案一:使用开发版PyTorch
部分用户反馈,安装PyTorch的nightly开发版本可以解决此问题。这是因为开发版本可能已经包含了针对MPS后端的修复和改进。
安装命令如下:
pip3 install --pre --force-reinstall torch --index-url https://download.pytorch.org/whl/nightly/cpu
方案二:使用WhisperCPP替代方案
对于无法通过PyTorch更新解决问题的用户,可以考虑使用WhisperCPP作为替代方案。WhisperCPP是Whisper模型的C++实现,对苹果芯片有良好的支持。
集成WhisperCPP到Stable-Whisper项目中的关键点包括:
- 正确处理WhisperCPP的输出格式
- 确保时间戳信息的准确传递
- 处理单词级时间戳(如果可用)
需要注意的是,当使用WhisperCPP时,如果结果中没有单词级时间戳,应将words字段设为None而不是空列表,否则会导致后续处理出现问题。
最佳实践建议
- 对于M1/M2系列芯片的Mac用户,建议优先考虑使用WhisperCPP方案
- 如果坚持使用PyTorch方案,确保使用最新的nightly版本
- 处理输出时,特别注意时间戳和单词级信息的格式要求
- 对于长音频文件,可以考虑启用VAD(语音活动检测)以提高处理效率
总结
MacOS平台上的MPS支持问题反映了PyTorch在不同硬件平台上的兼容性挑战。通过本文介绍的解决方案,用户可以根据自身情况选择最适合的方法来继续使用Stable-Whisper项目。随着PyTorch对苹果芯片支持的不断完善,这个问题有望在未来版本中得到彻底解决。
对于开发者而言,理解不同后端的特点和限制,以及掌握替代方案的使用方法,是保证项目顺利运行的关键。希望本文能为遇到类似问题的用户提供有价值的参考。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









