Stable-Whisper项目在MacOS MPS支持上的问题分析与解决方案
问题背景
在MacOS系统上使用Stable-Whisper项目进行语音转文字时,部分用户遇到了MPS(Metal Performance Shaders)支持问题。当尝试在M2 Pro芯片的Mac设备上运行模型时,系统会抛出"aten::empty.memory_format"操作未实现的错误。这个问题主要影响使用PyTorch 2.2版本及更高版本的用户。
技术分析
MPS是苹果提供的Metal Performance Shaders框架,它允许开发者利用苹果芯片的GPU能力来加速机器学习计算。在PyTorch中,MPS后端为苹果设备提供了原生的GPU加速支持。
出现这个错误的核心原因是PyTorch对某些稀疏张量操作的支持不完整。错误信息显示,系统尝试在'SparseMPS'后端上运行'aten::empty.memory_format'操作,但这个操作当前仅支持CPU、MPS等有限的后端。
解决方案
方案一:使用开发版PyTorch
部分用户反馈,安装PyTorch的nightly开发版本可以解决此问题。这是因为开发版本可能已经包含了针对MPS后端的修复和改进。
安装命令如下:
pip3 install --pre --force-reinstall torch --index-url https://download.pytorch.org/whl/nightly/cpu
方案二:使用WhisperCPP替代方案
对于无法通过PyTorch更新解决问题的用户,可以考虑使用WhisperCPP作为替代方案。WhisperCPP是Whisper模型的C++实现,对苹果芯片有良好的支持。
集成WhisperCPP到Stable-Whisper项目中的关键点包括:
- 正确处理WhisperCPP的输出格式
- 确保时间戳信息的准确传递
- 处理单词级时间戳(如果可用)
需要注意的是,当使用WhisperCPP时,如果结果中没有单词级时间戳,应将words字段设为None而不是空列表,否则会导致后续处理出现问题。
最佳实践建议
- 对于M1/M2系列芯片的Mac用户,建议优先考虑使用WhisperCPP方案
- 如果坚持使用PyTorch方案,确保使用最新的nightly版本
- 处理输出时,特别注意时间戳和单词级信息的格式要求
- 对于长音频文件,可以考虑启用VAD(语音活动检测)以提高处理效率
总结
MacOS平台上的MPS支持问题反映了PyTorch在不同硬件平台上的兼容性挑战。通过本文介绍的解决方案,用户可以根据自身情况选择最适合的方法来继续使用Stable-Whisper项目。随着PyTorch对苹果芯片支持的不断完善,这个问题有望在未来版本中得到彻底解决。
对于开发者而言,理解不同后端的特点和限制,以及掌握替代方案的使用方法,是保证项目顺利运行的关键。希望本文能为遇到类似问题的用户提供有价值的参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00