Stable-Whisper项目在MacOS MPS支持上的问题分析与解决方案
问题背景
在MacOS系统上使用Stable-Whisper项目进行语音转文字时,部分用户遇到了MPS(Metal Performance Shaders)支持问题。当尝试在M2 Pro芯片的Mac设备上运行模型时,系统会抛出"aten::empty.memory_format"操作未实现的错误。这个问题主要影响使用PyTorch 2.2版本及更高版本的用户。
技术分析
MPS是苹果提供的Metal Performance Shaders框架,它允许开发者利用苹果芯片的GPU能力来加速机器学习计算。在PyTorch中,MPS后端为苹果设备提供了原生的GPU加速支持。
出现这个错误的核心原因是PyTorch对某些稀疏张量操作的支持不完整。错误信息显示,系统尝试在'SparseMPS'后端上运行'aten::empty.memory_format'操作,但这个操作当前仅支持CPU、MPS等有限的后端。
解决方案
方案一:使用开发版PyTorch
部分用户反馈,安装PyTorch的nightly开发版本可以解决此问题。这是因为开发版本可能已经包含了针对MPS后端的修复和改进。
安装命令如下:
pip3 install --pre --force-reinstall torch --index-url https://download.pytorch.org/whl/nightly/cpu
方案二:使用WhisperCPP替代方案
对于无法通过PyTorch更新解决问题的用户,可以考虑使用WhisperCPP作为替代方案。WhisperCPP是Whisper模型的C++实现,对苹果芯片有良好的支持。
集成WhisperCPP到Stable-Whisper项目中的关键点包括:
- 正确处理WhisperCPP的输出格式
- 确保时间戳信息的准确传递
- 处理单词级时间戳(如果可用)
需要注意的是,当使用WhisperCPP时,如果结果中没有单词级时间戳,应将words字段设为None而不是空列表,否则会导致后续处理出现问题。
最佳实践建议
- 对于M1/M2系列芯片的Mac用户,建议优先考虑使用WhisperCPP方案
- 如果坚持使用PyTorch方案,确保使用最新的nightly版本
- 处理输出时,特别注意时间戳和单词级信息的格式要求
- 对于长音频文件,可以考虑启用VAD(语音活动检测)以提高处理效率
总结
MacOS平台上的MPS支持问题反映了PyTorch在不同硬件平台上的兼容性挑战。通过本文介绍的解决方案,用户可以根据自身情况选择最适合的方法来继续使用Stable-Whisper项目。随着PyTorch对苹果芯片支持的不断完善,这个问题有望在未来版本中得到彻底解决。
对于开发者而言,理解不同后端的特点和限制,以及掌握替代方案的使用方法,是保证项目顺利运行的关键。希望本文能为遇到类似问题的用户提供有价值的参考。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00