PIDNet 项目使用教程
2024-09-16 22:50:44作者:胡唯隽
1. 项目目录结构及介绍
PIDNet 项目的目录结构如下:
PIDNet/
├── configs/
│ ├── cityscapes/
│ └── camvid/
├── data/
│ ├── cityscapes/
│ └── camvid/
├── datasets/
├── figs/
├── models/
│ ├── speed/
├── pretrained_models/
│ ├── cityscapes/
│ └── camvid/
├── samples/
├── tools/
├── utils/
├── LICENSE
└── README.md
目录介绍:
- configs/: 包含项目的配置文件,分为
cityscapes和camvid两个子目录,分别用于不同的数据集配置。 - data/: 存放数据集文件,包括
cityscapes和camvid数据集。 - datasets/: 数据集处理相关的代码。
- figs/: 存放项目相关的图片文件。
- models/: 包含模型的定义和实现,其中
speed/目录用于速度测试。 - pretrained_models/: 存放预训练模型,分为
cityscapes和camvid两个子目录。 - samples/: 存放自定义输入的图片文件。
- tools/: 包含项目的工具脚本,如训练、评估和自定义输入处理等。
- utils/: 包含项目中使用的各种实用工具函数。
- LICENSE: 项目的许可证文件。
- README.md: 项目的介绍和使用说明。
2. 项目的启动文件介绍
PIDNet 项目的启动文件主要集中在 tools/ 目录下,以下是主要的启动文件及其功能介绍:
- train.py: 用于训练模型的脚本。可以通过配置文件指定训练参数,如数据集、模型类型、批处理大小等。
- eval.py: 用于评估模型的脚本。可以加载预训练模型并评估其在验证集或测试集上的性能。
- custom.py: 用于处理自定义输入的脚本。可以将自定义图片输入到模型中进行预测。
使用示例:
-
训练 PIDNet-S 模型:
python tools/train.py --cfg configs/cityscapes/pidnet_small_cityscapes.yaml GPUS (0,1) TRAIN_BATCH_SIZE_PER_GPU 6 -
评估 PIDNet-S 模型:
python tools/eval.py --cfg configs/cityscapes/pidnet_small_cityscapes.yaml TEST_MODEL_FILE pretrained_models/cityscapes/PIDNet_S_Cityscapes_val.pt -
处理自定义输入:
python tools/custom.py --a 'pidnet-l' --p 'pretrained_models/cityscapes/PIDNet_L_Cityscapes_test.pt' --t '.png'
3. 项目的配置文件介绍
PIDNet 项目的配置文件位于 configs/ 目录下,分为 cityscapes 和 camvid 两个子目录,分别对应不同的数据集。
配置文件示例:
- configs/cityscapes/pidnet_small_cityscapes.yaml:
DATASET: NAME: 'cityscapes' ROOT: 'data/cityscapes' TRAIN_SET: 'list/cityscapes/train.lst' VAL_SET: 'list/cityscapes/val.lst' TEST_SET: 'list/cityscapes/test.lst' MODEL: NAME: 'pidnet_small' PRETRAINED: 'pretrained_models/imagenet/PIDNet_S.pt' TRAIN: BATCH_SIZE_PER_GPU: 6 NUM_EPOCHS: 120 LR: 0.01 MOMENTUM: 0.9 WEIGHT_DECAY: 0.0005 TEST: MODEL_FILE: 'pretrained_models/cityscapes/PIDNet_S_Cityscapes_val.pt'
配置文件说明:
- DATASET: 配置数据集相关参数,如数据集名称、数据集根目录、训练集、验证集和测试集的路径。
- MODEL: 配置模型相关参数,如模型名称、预训练模型的路径。
- TRAIN: 配置训练相关参数,如批处理大小、训练轮数、学习率、动量和权重衰减。
- TEST: 配置测试相关参数,如测试模型的路径。
通过修改这些配置文件,可以灵活地调整训练和测试的参数,以适应不同的需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355