推荐使用STRAPS:合成训练实现真实准确的三维人体姿态和形状估计
在人工智能领域,尤其是计算机视觉中,精确的3D人体姿态和形状估计是一项核心任务。STRAPS(Synthetic Training for Real Accurate Pose and Shape)是一个创新的开源项目,旨在通过合成训练提升真实环境中的3D人体姿势和形状估计精度。由Akash Sengupta、Ignas Budvytis和Roberto Cipolla共同研发,并在2020年英国机器视觉会议上发表,STRAPS引入了一种新的方法,使模型即使面对复杂环境也能表现优异。
项目介绍
STRAPS的核心是利用合成数据进行训练,以增强模型对实际场景的适应性。与传统的基于真实图像的数据集相比,这种方法可以更方便地获取大量多样化的人体姿态和形状数据,减少现实世界数据采集的困难。STRAPS提供了从预处理到预测的全套流程代码,包括模型训练和模型在不同输入上的运行。
项目技术分析
STRAPS采用了包括SMPL模型、PointRend和DensePose在内的先进技术。其中,SMPL模型用于表示人体的三维几何形状,而PointRend和DensePose则用于生成高质量的边缘信息,帮助模型更好地理解图像中的目标。此外,该项目还提供了一个基于PyTorch的Neural Mesh Renderer的端口,用于渲染和后处理。
项目及技术应用场景
STRAPS在多种场景下都有应用潜力,如虚拟现实(VR)、增强现实(AR)、人机交互和体育分析等。例如,在运动分析中,精确的3D人体姿态可以帮助教练评估运动员的技术动作;在游戏开发中,合成训练可以提高角色动画的真实感;在远程医疗中,该技术也可为远程诊断提供辅助。
项目特点
- 合成数据训练:STRAPS利用合成数据克服了真实数据获取的限制,提高了模型的泛化能力。
- 易于部署:该项目提供清晰的安装说明和预测脚本,使得研究人员和开发者能快速上手。
- 高性能:STRAPS结合了PointRend和DensePose来提取高质量的边缘信息,优化了模型性能,尤其在处理复杂姿势时效果显著。
- 灵活性:STRAPS允许用户自定义训练选项,便于根据特定需求调整模型。
如果你正在寻找一种能有效提高3D人体姿态和形状估计准确性的解决方案,STRAPS无疑是值得尝试的选择。现在就下载并开始探索这个强大的工具,开启你的计算机视觉研究之旅吧!
@InProceedings{STRAPS2020BMVC,
author = {Sengupta, Akash and Budvytis, Ignas and Cipolla, Roberto},
title = {Synthetic Training for Accurate 3D Human Pose and Shape Estimation in the Wild},
booktitle = {British Machine Vision Conference (BMVC)},
month = {September},
year = {2020}
}
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00