推荐使用STRAPS:合成训练实现真实准确的三维人体姿态和形状估计
在人工智能领域,尤其是计算机视觉中,精确的3D人体姿态和形状估计是一项核心任务。STRAPS(Synthetic Training for Real Accurate Pose and Shape)是一个创新的开源项目,旨在通过合成训练提升真实环境中的3D人体姿势和形状估计精度。由Akash Sengupta、Ignas Budvytis和Roberto Cipolla共同研发,并在2020年英国机器视觉会议上发表,STRAPS引入了一种新的方法,使模型即使面对复杂环境也能表现优异。
项目介绍
STRAPS的核心是利用合成数据进行训练,以增强模型对实际场景的适应性。与传统的基于真实图像的数据集相比,这种方法可以更方便地获取大量多样化的人体姿态和形状数据,减少现实世界数据采集的困难。STRAPS提供了从预处理到预测的全套流程代码,包括模型训练和模型在不同输入上的运行。
项目技术分析
STRAPS采用了包括SMPL模型、PointRend和DensePose在内的先进技术。其中,SMPL模型用于表示人体的三维几何形状,而PointRend和DensePose则用于生成高质量的边缘信息,帮助模型更好地理解图像中的目标。此外,该项目还提供了一个基于PyTorch的Neural Mesh Renderer的端口,用于渲染和后处理。
项目及技术应用场景
STRAPS在多种场景下都有应用潜力,如虚拟现实(VR)、增强现实(AR)、人机交互和体育分析等。例如,在运动分析中,精确的3D人体姿态可以帮助教练评估运动员的技术动作;在游戏开发中,合成训练可以提高角色动画的真实感;在远程医疗中,该技术也可为远程诊断提供辅助。
项目特点
- 合成数据训练:STRAPS利用合成数据克服了真实数据获取的限制,提高了模型的泛化能力。
- 易于部署:该项目提供清晰的安装说明和预测脚本,使得研究人员和开发者能快速上手。
- 高性能:STRAPS结合了PointRend和DensePose来提取高质量的边缘信息,优化了模型性能,尤其在处理复杂姿势时效果显著。
- 灵活性:STRAPS允许用户自定义训练选项,便于根据特定需求调整模型。
如果你正在寻找一种能有效提高3D人体姿态和形状估计准确性的解决方案,STRAPS无疑是值得尝试的选择。现在就下载并开始探索这个强大的工具,开启你的计算机视觉研究之旅吧!
@InProceedings{STRAPS2020BMVC,
author = {Sengupta, Akash and Budvytis, Ignas and Cipolla, Roberto},
title = {Synthetic Training for Accurate 3D Human Pose and Shape Estimation in the Wild},
booktitle = {British Machine Vision Conference (BMVC)},
month = {September},
year = {2020}
}
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00