推荐使用STRAPS:合成训练实现真实准确的三维人体姿态和形状估计
在人工智能领域,尤其是计算机视觉中,精确的3D人体姿态和形状估计是一项核心任务。STRAPS(Synthetic Training for Real Accurate Pose and Shape)是一个创新的开源项目,旨在通过合成训练提升真实环境中的3D人体姿势和形状估计精度。由Akash Sengupta、Ignas Budvytis和Roberto Cipolla共同研发,并在2020年英国机器视觉会议上发表,STRAPS引入了一种新的方法,使模型即使面对复杂环境也能表现优异。
项目介绍
STRAPS的核心是利用合成数据进行训练,以增强模型对实际场景的适应性。与传统的基于真实图像的数据集相比,这种方法可以更方便地获取大量多样化的人体姿态和形状数据,减少现实世界数据采集的困难。STRAPS提供了从预处理到预测的全套流程代码,包括模型训练和模型在不同输入上的运行。
项目技术分析
STRAPS采用了包括SMPL模型、PointRend和DensePose在内的先进技术。其中,SMPL模型用于表示人体的三维几何形状,而PointRend和DensePose则用于生成高质量的边缘信息,帮助模型更好地理解图像中的目标。此外,该项目还提供了一个基于PyTorch的Neural Mesh Renderer的端口,用于渲染和后处理。
项目及技术应用场景
STRAPS在多种场景下都有应用潜力,如虚拟现实(VR)、增强现实(AR)、人机交互和体育分析等。例如,在运动分析中,精确的3D人体姿态可以帮助教练评估运动员的技术动作;在游戏开发中,合成训练可以提高角色动画的真实感;在远程医疗中,该技术也可为远程诊断提供辅助。
项目特点
- 合成数据训练:STRAPS利用合成数据克服了真实数据获取的限制,提高了模型的泛化能力。
- 易于部署:该项目提供清晰的安装说明和预测脚本,使得研究人员和开发者能快速上手。
- 高性能:STRAPS结合了PointRend和DensePose来提取高质量的边缘信息,优化了模型性能,尤其在处理复杂姿势时效果显著。
- 灵活性:STRAPS允许用户自定义训练选项,便于根据特定需求调整模型。
如果你正在寻找一种能有效提高3D人体姿态和形状估计准确性的解决方案,STRAPS无疑是值得尝试的选择。现在就下载并开始探索这个强大的工具,开启你的计算机视觉研究之旅吧!
@InProceedings{STRAPS2020BMVC,
author = {Sengupta, Akash and Budvytis, Ignas and Cipolla, Roberto},
title = {Synthetic Training for Accurate 3D Human Pose and Shape Estimation in the Wild},
booktitle = {British Machine Vision Conference (BMVC)},
month = {September},
year = {2020}
}
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0125
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00