STRAPS-3DHumanShapePose 项目教程
2024-09-21 20:11:22作者:翟萌耘Ralph
1. 项目介绍
STRAPS-3DHumanShapePose 是一个用于在野外环境中进行准确的三维人体姿态和形状估计的代码库。该项目基于 BMVC 2020 的论文《Synthetic Training for Accurate 3D Human Pose and Shape Estimation in the Wild》开发。STRAPS 通过合成训练数据来提高模型在真实世界中的表现,适用于各种复杂场景下的人体姿态和形状估计任务。
2. 项目快速启动
2.1 环境准备
首先,确保你的系统满足以下要求:
- Linux 或 macOS
- Python ≥ 3.6
2.2 安装依赖
建议使用虚拟环境来安装相关依赖:
python3 -m venv STRAPS
source STRAPS/bin/activate
安装 PyTorch 和 torchvision:
pip install torch==1.4.0 torchvision==0.5.0
安装 detectron2 及其依赖:
pip install cython
pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
pip install 'git+https://github.com/akashsengupta1997/detectron2.git'
安装剩余依赖:
pip install -r requirements.txt
2.3 下载模型和数据
下载 SMPL 模型和额外文件,并将其放置在 additional 目录中。
2.4 运行推理
使用 run_predict.py 脚本进行推理:
python run_predict.py --input /demo --checkpoint checkpoints/straps_model_checkpoint.tar --silh_from pointrend
3. 应用案例和最佳实践
3.1 应用案例
STRAPS-3DHumanShapePose 可以应用于多种场景,如:
- 体育分析:捕捉运动员的动作和姿态,进行技术分析和改进。
- 虚拟现实:在虚拟环境中生成逼真的人体模型,增强用户体验。
- 医学研究:分析患者的运动模式,辅助诊断和治疗。
3.2 最佳实践
- 数据预处理:确保输入图像中的人体部分清晰可见,避免遮挡和模糊。
- 模型选择:根据具体需求选择合适的模型和参数设置,以获得最佳性能。
- 性能优化:在推理过程中,可以调整渲染选项以提高运行效率。
4. 典型生态项目
STRAPS-3DHumanShapePose 与其他开源项目结合使用,可以进一步提升其功能和应用范围:
- Detectron2:用于人体检测和分割,提供更准确的输入数据。
- SMPL:用于生成和处理三维人体模型,增强模型的表现力。
- PyTorch:提供强大的深度学习框架,支持模型的训练和推理。
通过这些生态项目的结合,STRAPS-3DHumanShapePose 可以在更多领域发挥其优势,实现更复杂和多样化的应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210