Qiskit量子电路中参数绑定的缓存问题解析
问题现象
在使用Qiskit的QuantumCircuit进行参数绑定时,开发者发现当设置inplace=True时,电路数据中的指令参数并未按预期更新。具体表现为:尽管调用了assign_parameters()方法进行参数绑定,但检查circuit.data属性时,指令中仍然保留着原始参数对象的引用,而非更新后的数值。
问题复现
该问题可以通过以下代码复现:
import numpy as np
from qiskit.circuit.library import TwoLocal
num_qubits = 6
n_layers = 4
qc = TwoLocal(num_qubits, "rx", "cx",
entanglement=[[(0,1),(2,3),(4,5)],[(1,2),(3,4)]],
reps=n_layers, flatten=True,
skip_unentangled_qubits=True,
skip_final_rotation_layer=True)
rotation_angles = np.random.random(qc.num_parameters)
qc.assign_parameters(rotation_angles, inplace=True)
print(qc.data) # 输出显示参数未被正确绑定
问题分析
经过深入分析,这个问题与Qiskit底层实现中的Rust侧CircuitData缓存机制有关。具体表现为:
-
缓存机制影响:Python端的门操作在Rust侧被缓存,但参数更新后缓存未能正确清除,导致门操作继续使用旧的参数定义。
-
特定条件触发:该问题仅在设置
flatten=True时出现。如果使用普通电路或在flatten=False后调用.decompose()方法,则不会出现此问题,这表明flatten=True可能构建了某种不一致或不兼容的状态。 -
工作区差异:当使用
inplace=False时,由于创建了新的电路实例,缓存问题不会出现,参数绑定能正常工作。
临时解决方案
在官方修复此问题前,开发者可以采用以下临时解决方案:
-
禁用缓存:通过设置环境变量禁用门缓存机制
export QISKIT_NO_CACHE_GATES=1 -
替代方案:避免使用
flatten=True参数,改为使用flatten=False后手动调用.decompose()方法。
技术背景
Qiskit为了提高性能,在底层实现中使用了Rust编写的CircuitData结构来存储电路信息。这种混合架构虽然提升了性能,但也带来了Python和Rust之间状态同步的挑战。参数绑定操作需要同时更新Python和Rust两侧的数据结构,而当前的实现中,当inplace=True时,Rust侧的缓存未能正确失效,导致参数更新不完整。
最佳实践建议
-
在参数绑定场景中,优先使用
inplace=False模式,虽然会创建新实例但能确保参数正确绑定。 -
对于性能敏感的场景,如果必须使用
inplace=True,建议在参数绑定后调用.decompose()方法强制刷新电路状态。 -
关注Qiskit官方更新,该问题预计会在未来版本中得到修复。
总结
这个问题揭示了量子编程框架中混合语言实现的复杂性。开发者在处理参数化量子电路时,应当注意不同操作模式下的行为差异,特别是在使用高级电路构造方法如TwoLocal时。理解底层实现机制有助于避免类似问题,并能在遇到问题时快速找到解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00