AFLplusplus项目在Ubuntu 22.04上构建LLVM LTO模式失败问题分析
问题背景
在使用AFLplusplus项目的dev分支(commit 59465bd)时,开发者在Ubuntu 22.04系统上尝试构建LLVM LTO模式时遇到了构建失败的问题。系统已安装了官方APT仓库提供的LLVM 18.1.2版本(包括clang-18和lld-18等组件),但构建过程中LLVM LTO模式无法成功编译。
错误现象
在构建过程中,系统报告LLVM LTO模式构建失败,错误信息显示为"LLVM LTO mode could not be built"。完整的构建总结显示:
- afl-fuzz和基本工具构建成功
- LLVM基础模式构建成功
- LLVM模式构建成功
- LLVM LTO模式构建失败
- gcc_mode构建失败(预期行为)
问题分析
深入分析构建日志后发现,核心问题出在系统尝试使用clang-18进行LTO(链接时优化)编译时失败。这表明问题并非直接源于AFLplusplus项目本身,而是与系统上的LLVM工具链配置有关。
进一步调查发现,虽然系统安装了llvm-18-dev和相关组件,但关键的LLVMgold.so文件缺失。这个文件是LLVM的链接器插件,对于LTO编译过程至关重要。
根本原因
通过比较LLVM 17和18的Debian软件包内容发现:
- LLVM 17的llvm-17-linker-tools包确实包含了LLVMgold.so文件
- 但LLVM 18的llvm-18-linker-tools包中缺少了这个关键文件
这表明这是一个LLVM 18在Ubuntu 22.04上的打包问题。LLVMgold.so是LLVM链接器插件的一部分,它允许GNU链接器使用LLVM进行LTO优化。缺少这个文件会导致任何尝试使用LTO功能的编译过程失败。
解决方案
对于遇到类似问题的用户,可以考虑以下几种解决方案:
-
降级使用LLVM 17:由于LLVM 17的包中包含完整的链接器工具,可以暂时使用LLVM 17进行构建。
-
手动编译LLVMgold.so:从LLVM源码中编译并安装这个插件。
-
等待官方修复:关注LLVM官方仓库的更新,等待修复后的版本发布。
-
使用其他LTO实现:考虑使用LLVM的另一种LTO实现方式(如ThinLTO),如果项目支持的话。
技术建议
对于依赖LLVM LTO功能的开发者,建议:
-
在构建环境中验证LTO功能是否正常工作,可以使用简单的测试程序:
clang-18 -flto -o test test.c -
检查LLVMgold.so是否存在:
ls /usr/lib/llvm-18/lib/LLVMgold.so -
如果必须使用LLVM 18,可以考虑从源码构建LLVM并确保启用了gold插件支持。
总结
这个问题展示了在开发环境中使用前沿工具链时可能遇到的挑战。虽然AFLplusplus项目本身没有问题,但依赖的底层工具链的完整性对于构建过程至关重要。开发者在遇到类似构建问题时,应该首先验证基础工具链的功能完整性,然后再排查项目特定的构建问题。
对于AFLplusplus用户来说,如果不需要LLVM LTO模式,可以继续使用其他构建模式;如果需要这个功能,目前可能需要暂时使用LLVM 17版本或等待LLVM 18的完整包发布。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00