GAPIC Generator Python 使用教程
1. 项目介绍
GAPIC Generator Python 是一个用于生成 Python API 客户端库的工具,适用于通过 Protocol Buffers 描述的 API。该项目的主要目的是替代传统的单体生成器,提供更轻量级、更明确的 API 规范格式,并支持在 Python 3 中生成客户端库。
主要特点
- 轻量级: 专注于生成 Python API 客户端库。
- Bazel 支持: 可以通过 Bazel 进行调用,适合在持续集成和自动化管道中使用。
- Protocol Buffers: 支持通过 Protocol Buffers 描述的 API。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用 pip 安装 gapic-generator:
pip install gapic-generator
2.2 克隆 Google APIs 仓库
为了生成客户端库,你需要克隆 Google APIs 仓库:
git clone https://github.com/googleapis/googleapis.git
2.3 创建 Bazel 目标
在你的 BUILD.bazel 文件中添加以下目标:
load("@gapic_generator_python//rules_python_gapic:py_gapic.bzl", "py_gapic_library")
load("@gapic_generator_python//rules_python_gapic:py_gapic_pkg.bzl", "py_gapic_assembly_pkg")
py_gapic_library(
name = "documentai_py_gapic",
srcs = [":documentai_proto"],
)
py_gapic_assembly_pkg(
name = "documentai-v1beta2-py",
deps = [
":documentai_py_gapic",
],
)
2.4 编译 API
使用 Bazel 编译 API:
bazel build //google/cloud/documentai/v1beta2:documentai-v1beta2-py
3. 应用案例和最佳实践
3.1 自动化生成客户端库
在持续集成(CI)环境中,可以使用 Bazel 自动化生成客户端库。通过配置 CI 工具(如 GitHub Actions),在每次代码提交时自动生成和测试客户端库。
3.2 自定义 API 生成
通过修改 Protocol Buffers 文件中的注释和结构,可以自定义生成的客户端库。例如,添加自定义方法或修改现有方法的参数。
4. 典型生态项目
4.1 Google Cloud APIs
GAPIC Generator Python 主要用于生成 Google Cloud 服务的客户端库。例如,Google Cloud Vision、Google Cloud Document AI 等服务的客户端库都可以通过该项目生成。
4.2 Protocol Buffers
Protocol Buffers 是 Google 开发的一种数据序列化格式,广泛用于定义 API 和服务。GAPIC Generator Python 依赖于 Protocol Buffers 来生成客户端库。
4.3 Bazel
Bazel 是一个开源构建工具,支持大规模软件项目的构建和测试。GAPIC Generator Python 推荐使用 Bazel 进行自动化构建和集成。
通过以上步骤,你可以快速上手并使用 GAPIC Generator Python 生成 Python API 客户端库。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00