GAPIC Generator Python 使用教程
1. 项目介绍
GAPIC Generator Python 是一个用于生成 Python API 客户端库的工具,适用于通过 Protocol Buffers 描述的 API。该项目的主要目的是替代传统的单体生成器,提供更轻量级、更明确的 API 规范格式,并支持在 Python 3 中生成客户端库。
主要特点
- 轻量级: 专注于生成 Python API 客户端库。
- Bazel 支持: 可以通过 Bazel 进行调用,适合在持续集成和自动化管道中使用。
- Protocol Buffers: 支持通过 Protocol Buffers 描述的 API。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用 pip 安装 gapic-generator:
pip install gapic-generator
2.2 克隆 Google APIs 仓库
为了生成客户端库,你需要克隆 Google APIs 仓库:
git clone https://github.com/googleapis/googleapis.git
2.3 创建 Bazel 目标
在你的 BUILD.bazel 文件中添加以下目标:
load("@gapic_generator_python//rules_python_gapic:py_gapic.bzl", "py_gapic_library")
load("@gapic_generator_python//rules_python_gapic:py_gapic_pkg.bzl", "py_gapic_assembly_pkg")
py_gapic_library(
name = "documentai_py_gapic",
srcs = [":documentai_proto"],
)
py_gapic_assembly_pkg(
name = "documentai-v1beta2-py",
deps = [
":documentai_py_gapic",
],
)
2.4 编译 API
使用 Bazel 编译 API:
bazel build //google/cloud/documentai/v1beta2:documentai-v1beta2-py
3. 应用案例和最佳实践
3.1 自动化生成客户端库
在持续集成(CI)环境中,可以使用 Bazel 自动化生成客户端库。通过配置 CI 工具(如 GitHub Actions),在每次代码提交时自动生成和测试客户端库。
3.2 自定义 API 生成
通过修改 Protocol Buffers 文件中的注释和结构,可以自定义生成的客户端库。例如,添加自定义方法或修改现有方法的参数。
4. 典型生态项目
4.1 Google Cloud APIs
GAPIC Generator Python 主要用于生成 Google Cloud 服务的客户端库。例如,Google Cloud Vision、Google Cloud Document AI 等服务的客户端库都可以通过该项目生成。
4.2 Protocol Buffers
Protocol Buffers 是 Google 开发的一种数据序列化格式,广泛用于定义 API 和服务。GAPIC Generator Python 依赖于 Protocol Buffers 来生成客户端库。
4.3 Bazel
Bazel 是一个开源构建工具,支持大规模软件项目的构建和测试。GAPIC Generator Python 推荐使用 Bazel 进行自动化构建和集成。
通过以上步骤,你可以快速上手并使用 GAPIC Generator Python 生成 Python API 客户端库。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00